Главная » Файлы » 10 класс » Геометрия

ГДЗ по геометрии 10 класс Атанасян

На данной странице вы можете бесплатно посмотреть ГДЗ по геометрии 10 класс Атанасян с ответами. Надеемся что ГДЗ по геометрии 10 класс Атанасян поможет вам решить все ваши проблемы. Настоятельно рекомендуем пользоваться ГДЗ по геометрии 10 класс Атанасян только в целях проверки знаний. Главное – не оценка, главное – знание.

Уважаемые посетители сайта, если вы не согласны с той информацией которая представлена на данной странице или считаете ее не правильной, не стоит попросту тратить свое время на написание негативных высказываний, вы можете помочь друг другу, для этого присылайте в комментарии свое "правильное" решение и мы его скорее всего опубликуем.

12.09.2014, 17:25
 

Глава I Параллельность прямых и плоскостей. §1 Параллельность прямых, прямой и плоскости.

17. На рисунке 17 точки М, N, Q и Р — середины отрезков DB, DC, АС и АВ. Найдите периметр четырехугольника MNQP, если AD= 12 см, ВС =14 см.
16. Параллельные прямые a и b лежат в плоскости α. Докажите, что прямая с, пересекающая прямые a и b, также лежит в плоскости α.
18. Точка C лежит на отрезке АВ. Через точку А проведена плоскость, а через точки В и С — параллельные прямые, пересекающие эту плоскость соответственно в точках В1 и С1. Найдите длину отрезка СС1, если: а) точка С — середина отрезка АВ и ВВ1=7 см; б) АС:
19. Стороны АВ и ВС параллелограмма ABCD пересекают плоскость α. Докажите, что прямые AD и DC также пересекают плоскость α.
20. Средняя линия трапеции лежит в плоскости α. Пересекают ли прямые, содержащие основания трапеции, плоскость α? Ответ обоснуйте.
21. Треугольники ABC и ABD не лежат в одной плоскости. Докажите, что любая прямая, параллельная отрезку CD, пересекает плоскости данных треугольников.
22. Точки А и В лежат в плоскости а, а точка С не лежит в этой плоскости. Докажите, что прямая, проходящая через середины отрезков АС и ВС, параллельна плоскости α.
23. Точка М не лежит в плоскости прямоугольника ABCD. Докажите, что прямая CD параллельна плоскости АВМ.
24. Точка М не лежит в плоскости трапеции ABCD с основанием AD. Докажите, что прямая AD параллельна плоскости ВМС.
25. Докажите, что если данная прямая параллельна прямой, по которой пересекаются две плоскости, и не лежит в этих плоскостях, то она параллельна этим плоскостям.
26. Сторона АС треугольника ABC параллельна плоскости* α, а стороны АВ и ВС пересекаются с этой плоскостью в точках М и N. Докажите, что треугольники ABC и MBN подобны.
27. Точка С лежит на отрезке АВ, причем АВ:ВС = 4:3. Отрезок CD, равный 12 см, параллелен плоскости α, проходящей через точку В. Докажите, что прямая AD пересекает плоскость α в некоторой точке E, и найдите отрезок BE
28. На сторонах АВ и АС треугольника ABC взяты соответственно точки D и Е так, что DE = 5 см и BD/DA=2/3. Плоскость α проходит через точки B и С и параллельна отрезку DE. Найдите длину отрезка ВС.
29. В трапеции ABCD основание ВС равно 12 см. Точка М не лежит в плоскости трапеции, а точка К — середина отрезка ВМ. Докажите, что плоскость ADK пересекает отрезок МС в некоторой точке Н, и найдите отрезок КН.
30. Основание АВ трапеции ABCD параллельно плоскости α, а вершина С лежит в этой плоскости. Докажите, что: а) основание CD трапеции лежит в плоскости α; б) средняя линия трапеции параллельна плоскости α.
31. Плоскость α параллельна стороне ВС треугольника ABC и проходит через середину стороны АВ. Докажите, что плоскость α проходит также через середину стороны АС.
32. Плоскости α и β пересекаются по прямой АВ. Прямая а параллельна как плоскости α, так и плоскости β. Докажите, что прямые а и АВ параллельны.
33. Докажите, что если три плоскости, не проходящие через одну прямую, попарно пересекаются, то прямые, по которым они пересекаются, либо параллельны, либо имеют общую точку.
Глава I Параллельность прямых и плоскостей. §2 Взаимное расположение прямых в пространстве. Угол между двумя прямыми.

40. На скрещивающихся прямых а и b отмечены соответственно точки М и N. Через прямую а и точку N проведена плоскость α, а через прямую b и точку М — плоскость β. а) Лежит ли прямая b в плоскости α? б) Пересекаются ли плоскости α и &
34. Точка D не лежит в плоскости треугольника ABC, точки М, N и Р — середины отрезков DA, DB и DC соответственно, точка К лежит на отрезке BN. Выясните взаимное расположение прямых: a) ND и АВ; б) РК и ВС; в) MN и АВ; г) МР и АС; д) KN и AC; е) MD и ВС.
35. Через точку М, не лежащую на прямой а, проведены две прямые, не имеющие общих точек с прямой а. Докажите, что по крайней мере одна из этих прямых и прямая а являются скрещивающимися прямыми.
36. Прямая с пересекает прямую а и не пересекает прямую b, параллельную прямой а. Докажите, что b и с — скрещивающиеся прямые.
37. Прямая m пересекает сторону АВ треугольника ABC. Каково взаимное расположение прямых m и ВС, если: а) прямая m лежит в плоскости ABC и не имеет общих точек с отрезком АС; б) прямая m не лежит в плоскости ABC?
38. Через вершину А ромба ABCD проведена прямая а, параллельная диагонали BD, а через вершину С — прямая b, не лежащая в плоскости ромба. Докажите, что: а) прямые а и CD пересекаются; б) а и b скрещивающиеся прямые.
39. Докажите, что если АВ и CD скрещивающиеся прямые, то AD и ВС также скрещивающиеся прямые.
41. Может ли каждая из двух скрещивающихся прямых быть параллельна третьей прямой? Ответ обоснуйте.
42. Даны параллелограмм ABCD и трапеция ABEK с основанием ЕК, не лежащие в одной плоскости, а) Выясните взаимное расположение прямых CD и ЕК. б) Найдите периметр трапеции, если известно, что в нее можно вписать окружность и АВ = 22,5 см, EK = 27,5 см.
43. Докажите, что середины сторон пространственного четырехугольника* являются вершинами параллелограмма.
44. Прямые ОВ и CD параллельные, а ОА и CD — скрещивающиеся прямые. Найдите угол между прямыми ОА и CD, если: а) ∠АОВ = 40°; б) ∠АОВ= 135°; в) ∠АОВ = 90°.
45. Прямая а параллельна стороне ВС параллелограмма ABCD и не лежит в плоскости параллелограмма. Докажите, что а и CD — скрещивающиеся прямые, и найдите угол между ними, если один из углов параллелограмма равен: а) 50°; б) 121°.
46. Прямая m параллельна диагонали BD ромба ABCD и не лежит в плоскости ромба. Докажите, что: a) m и АС — скрещивающиеся прямые — и найдите угол между ними; б) m и AD — скрещивающиеся прямые — и найдите угол между ними, если ∠ABC=128°.
47. В пространственном четырехугольнике ABCD стороны АВ и CD равны. Докажите, что прямые АВ и CD образуют равные углы с прямой, проходящей через середины отрезков ВС и AD.
Глава II Перпендикулярность прямых и плоскостей. §1 Перпендикулярность прямой и плоскости

131. В тетраэдре ABCD точка М — середина ребра ВС, АВ = AC, DB = DC. Докажите, что плоскость треугольника ADM перпендикулярна к прямой ВС.
116. Дан параллелепипед ABCDA1B1C1D1. Докажите, что: а) DC⊥B1C1, и AB⊥A1D1 если ∠BAD =90°; б) АВ⊥СС1 и DD1⊥A1B1, если AB⊥DD1.
117. В тетраэдре ABCD известно, что BC⊥AD. Докажите, что AD⊥MN, где М и N — середины ребер АВ и АС.
118. Точки А, М и О лежат на прямой, перпендикулярной к плоскости α, а точки О, В, С и D лежат в плоскости α. Какие из следующих углов являются прямыми: ∠AOB, ∠MOC, ∠DAM, ∠DOА, ∠BMO?
119. Прямая ОА перпендикулярна к плоскости ОВС, и точка О является серединой отрезка AD. Докажите, что: a) AB = DB; б) AB=AC, если ОВ=ОС; в) OB = OC, если АВ=АС.
120. Через точку О пересечения диагоналей квадрата со стороной а проведена прямая ОК, перпендикулярная к плоскости квадрата. Найдите расстояние от точки К до вершин квадрата, если ОK = b.
121. В треугольнике ABC дано: ∠C = 90°, AC = 6 см, ВС = 8 см, СМ — медиана. Через вершину С проведена прямая СК, перпендикулярная к плоскости треугольника ABC, причем СК = 12 см. Найдите КМ.
122. Прямая CD перпендикулярна к плоскости правильного треугольника ABC. Через центр О этого треугольника проведена прямая ОК, параллельная прямой CD. Известно, что АВ = 16 √3 см, ОK = 12 см, CD = 16 см. Найдите расстояния от точек D и К до вершин А
123. Докажите, что если две плоскости α и β перпендикулярны к прямой а, то они параллельны.
124. Прямая PQ параллельна плоскости α. Через точки Р и Q проведены прямые, перпендикулярные к плоскости α, которые пересекают эту плоскость соответственно в точках P1и Q1. Докажите, что PQ = P1Q1.
125. Через точки Р и Q прямой PQ проведены прямые, перпендикулярные к плоскости α и пересекающие ее соответственно в точках Р1 и Q1. Найдите P1Q1, если PQ = 15 см, РР1 = — 21,5 см, QQ1=33,5 см.
126. Прямая MB перпендикулярна к сторонам АВ и ВС треугольника ABC. Определите вид треугольника MBD, где D — произвольная точка прямой АС.
127. В треугольнике ABC сумма углов A и B равна 90°. Прямая BD перпендикулярна к плоскости ABC. Докажите, что CD⊥AC.
128. Через точку О пересечения диагоналей параллелограмма ABCD проведена прямая ОМ так, что МА = МС, MB = MD. Докажите, что прямая ОМ перпендикулярна к плоскости параллелограмма.
129. Прямая AM перпендикулярна к плоскости квадрата ABCD, диагонали которого пересекаются в точке О. Докажите, что: а) прямая BD перпендикулярна к плоскости АМО; б) MO⊥BD.
130. Через вершину В квадрата ABCD проведена прямая ВМ. Известно, что ∠MBA = ∠MBC=90°, МВ =m, АВ = n. Найдите расстояния от точки М до: а) вершин квадрата; б) прямых АС и BD.
132. Докажите, что если одна из двух параллельных плоскостей перпендикулярна к прямой, то и другая плоскость перпендикулярна к этой прямой.
133. Докажите, что через любую точку пространства проходит только одна плоскость, перпендикулярная к данной прямой.
134. Докажите, что все прямые, проходящие через данную точку М прямой а и перпендикулярные к этой прямой, лежат в плоскости, проходящей через точку М и перпендикулярной к прямой а.
135. Прямая а перпендикулярна к плоскости α и перпендикулярна к прямой b, не лежащей в этой плоскости. Докажите, что b II α.
136. Докажите, что если точка X равноудалена от концов данного отрезка АВ, то она лежит в плоскости, проходящей через середину отрезка АВ и перпендикулярной к прямой АВ.
137. Докажите, что через каждую из двух взаимно перпендикулярных скрещивающихся прямых проходит плоскость, перпендикулярная к другой прямой.
Глава II Перпендикулярность прямых и плоскостей. §3 Двугранный угол. Перпендикулярность плоскостей.

170. Из вершины В треугольника ABC, сторона АС которого лежит в плоскости а, проведен к этой плоскости перпендикуляр BB1. Найдите расстояния от точки В до прямой АС и до плоскости α, если АВ = 2 см, ∠ВАС= 150° и двугранный угол ВАСВ1 равен 45°.
166. Неперпендикулярные плоскости α и β пересекаются по прямой MN. В плоскости β из точки А проведен перпендикуляр АВ к прямой MN и из той же точки А проведен перпендикуляр АС к плоскости α. Докажите, что ∠ABC — линейный угол дву
167. В тетраэдре DABС все ребра равны, точка М— середина ребра АС. Докажите, что ∠DMB—линейный угол двугранного угла BACD.
168. Двугранный угол равен φ. На одной грани этого угла лежит точка, удаленная на расстояние d от плоскости другой грани. Найдите расстояние от этой точки до ребра двугранного угла.
169. Даны два двугранных угла, у которых одна грань общая, а две другие грани являются различными полуплоскостями одной плоскости. Докажите, что сумма этих двугранных углов равна 180°.
171. Гипотенуза прямоугольного равнобедренного треугольника лежит в плоскости а, а катет наклонен к этой плоскости под углом 30°. Найдите угол между плоскостью α и плоскостью треугольника.
172. Катет АС прямоугольного треугольника ABC с прямым углом С лежит в плоскости α, а угол между плоскостями α и ABC равен 60°. Найдите расстояние от точки В до плоскости α, если АС = 5 см, АВ = 13 см.
173. Ребро CD тетраэдра ABCD перпендикулярно к плоскости ABC, АВ = ВС = АС = 6, BD = 3√7. Найдите двугранные углы DACB, DABC, BDCA.
174. Найдите двугранный угол ABCD тетраэдра ABCD, если углы DAB, DAC и ACB прямые, AC = СВ = 5, DB = 5√5.
175. Докажите, что если все ребра тетраэдра равны, то все его двугранные углы также равны. Найдите эти углы.
176. Через сторону AD ромба ABCD проведена плоскость ADM так, что двугранный угол BADM равен 60°. Найдите сторону ромба, если ∠BAD = 45° и расстояние от точки В до плоскости ADM равно 4√3.
177. Докажите, что плоскость, перпендикулярная к прямой, по которой пересекаются две данные плоскости, перпендикулярна к каждой из этих плоскостей.
178. Плоскости α и β взаимно перпендикулярны и пересекаются по прямой с. Докажите, что любая прямая плоскости α, перпендикулярная к прямой с, перпендикулярна к плоскости β.
179. Плоскости α и β взаимно перпендикулярны. Через некоторую точку плоскости α проведена прямая, перпендикулярная к плоскости β. Докажите, что эта прямая лежит в плоскости α.
180. Докажите, что плоскость и не лежащая в ней прямая, перпендикулярные к одной и той же плоскости, параллельны.
181. Плоскости α и β пересекаются по прямой а. Из точки М проведены перпендикуляры МА и MB соответственно к плоскостям α и β. Прямая а пересекает плоскость АМВ в точке С. Докажите, что MC⊥a.
182. Плоскости α и β взаимно перпендикулярны и пересекаются по прямой а. Из точки М проведены перпендикуляры MA и MB к этим плоскостям. Прямая а пересекает плоскость АМВ в точке С. а) Докажите, что четырехугольник АСВМ является прямоугольником,
183. Плоскости α и β пересекаются по прямой а и перпендикулярны к плоскости γ. Докажите, что прямая а перпендикулярна к плоскости γ.
184. Общая сторона АВ треугольников ABC и ABD равна 10 см. Плоскости этих треугольников взаимно перпендикулярны. Найдите CD, если треугольники: а) равносторонние; б) прямоугольные равнобедренные с гипотенузой АВ.
185. Прямая а не перпендикулярна к плоскости α. Докажите, что существует плоскость, проходящая через прямую а и перпендикулярная к плоскости α.
186. Докажите, что существует, и притом только одна, прямая, пересекающая две данные скрещивающиеся прямые а и b и перпендикулярная к каждой из них.
187. Найдите диагональ прямоугольного параллелепипеда, если его измерения равны: а) 1, 1, 2; б) 8, 9, 12; в) √39. 7, 9.
188. Ребро куба равно а. Найдите диагональ куба.
189. Найдите расстояние от вершины куба до плоскости любой грани, в которой не лежит эта вершина, если: а) диагональ грани куба равна m; б) диагональ куба равна d.
190. Дан куб ABCDA1B1C1D1. Найдите следующие двугранные углы: а) АВВ1С;б) ADD1B; в) А1ВВ1К, где К — середина ребра A1D1.
191. Дан куб ABCDA1B1C1D1. Докажите, что плоскости АВС1 и A1B1D1 перпендикулярны.
192. Найдите тангенс угла между диагональю куба и плоскостью одной из его граней.
193. В прямоугольном параллелепипеде ABCDA1B1C1D1 дано: D1B = d, АС = m, АВ=n. Найдите расстояние между: а) прямой A1C1 и плоскостью ABC; б) плоскостями ABB1 и DCC1; в) прямой DD1 и плоскостью АСС1;
194. Ребро куба равно а. Найдите расстояние между скрещивающимися прямыми, содержащими: а) диагональ куба и ребро куба; б) диагональ куба и диагональ грани куба.
195. Найдите измерения прямоугольного параллелепипеда ABCDA1B1C1D1, если АС1 = 12 см и диагональ BD1 составляет с плоскостью грани AA1D1D угол в 30°, а с ребром DD1 — угол в 45°.
196. Изобразите куб ABCDA1B1C1D1 и постройте его сечение плоскостью, проходящей через: а) ребро АА1 и перпендикулярной к плоскости BB1D1; б) ребро АВ и перпендикулярной к плоскости CDA1.
Глава III Многогранники. § 2. Пирамида

239. Основанием пирамиды является ромб, сторона которого равна 5 см, а одна из диагоналей равна 8 см. Найдите боковые ребра пирамиды, если высота ее проходит через точку пересечения диагоналей основания и равна 7 см.
246. Высота треугольной пирамиды равна 40 см, а высота каждой боковой грани, проведенная из вершины пирамиды, равна 41 см. а) Докажите, что высота пирамиды проходит через центр окружности, вписанной в ее основание; б) Найдите площадь основания пирамиды, е
253. Основанием пирамиды является равнобедренная трапеция с основаниями 6 см и 4√6 см и высотой 5 см. Каждое боковое ребро пирамиды равно 13 см. Найдите ее высоту.
263. В правильной пирамиде MABCD точки К, L и N лежат на ребрах ВС, МС и AD, KN||BA, KL||BM. а) Покройте сечение пирамиды плоскостью KLN и определите вид сечения. б) Докажите, что плоскость KLN параллельна плоскости АМВ.
269. Стороны оснований правильной треугольной усеченной пирамиды равны 4 дм и 2 дм, а боковое ребро равно 2 дм. Найдите высоту и апофему пирамиды.
240. Основанием пирамиды является параллелограмм, стороны которого равны 20 см и 36 см, а площадь равна 360 см2. Высота пирамиды проходит через точку пересечения диагоналей основания и равна 12 см. Найдите площадь боковой поверхности пирамиды.
241. Основанием пирамиды является параллелограмм со сторонами 5 м и 4 м и меньшей диагональю 3 м. Высота пирамиды проходит через точку пересечения диагоналей основания и равна 2 м. Найдите площадь полной поверхности пирамиды.
242. Основанием пирамиды является квадрат, одно из боковых ребер перпендикулярно к плоскости основания. Плоскость боковой грани, не проходящей через высоту пирамиды, наклонена к плоскости основания под углом 45°. Наибольшее боковое ребро равно 12 см. Найд
243. Основанием пирамиды DABC является треугольник ABC, у которого АВ = АС= 13 см, ВС=10 см; ребро AD перпендикулярно к плоскости основания и равно 9 см. Найдите площадь боковой поверхности пирамиды.
244. Основанием пирамиды DABC является прямоугольный треугольник ABC, у которого гипотенуза АВ равна 29 см, катет АС равен 21 см. Ребро DA перпендикулярно к плоскости основания и равно 20 см. Найдите площадь боковой поверхности пирамиды.
245. Основанием пирамиды является прямоугольник, диагональ которого равна 8 см. Плоскости двух боковых граней перпендикулярны к плоскости основания, а две другие боковые грани образуют с основанием углы 30° и 45°. Найдите площадь поверхности пирамиды.
247. Двугранные углы при основании пирамиды равны. Докажите, что: а) высота пирамиды проходит через центр окружности, вписанной в основание; б) высоты всех боковых граней, проведенные из вершины пирамиды, равны; в) площадь боковой поверхности пирамиды рав
248. Основанием пирамиды является треугольник со сторонами 12 см, 10 см и 10 см. Каждая боковая грань наклонена к основанию под углом 45°. Найдите площадь боковой поверхности пирамиды.
249. В пирамиде все боковые ребра равны между собой. Докажите, что: а) высота пирамиды проходит через центр окружности, описанной около основания; б) все боковые ребра пирамиды составляют равные углы с плоскостью основания.
250. Основанием пирамиды является равнобедренный треугольник с углом 120°. Боковые ребра образуют с ее высотой, равной 16 см, углы в 45°. Найдите площадь основания пирамиды.
251. Основанием пирамиды DABC является прямоугольный треугольник с гипотенузой ВС. Боковые ребра пирамиды равны друг другу, а ее высота равна 12 см. Найдите боковое ребро пирамиды, если ВС = 10 см.
252. Основанием пирамиды DABC является равнобедренный треугольник ABC, в котором АВ = АС, ВС=6 см, высота АН равна 9 см. Известно также, что DA = DB = DC=13 см. Найдите высоту пирамиды.
254. В правильной Треугольной пирамиде сторона основания равна а, высота равна Н. Найдите: а) боковое ребро пирамиды; б) плоский угол при вершине пирамиды; в) угол между боковым ребром и плоскостью основания пирамиды; г) угол между боковой гранью и основа
255. В правильной треугольной пирамиде сторона основания равна 8 см, а плоский угол при вершине равен φ. Найдите высоту пирамиды.
256. В правильной четырехугольной пирамиде сторона основания равна m, а плоский угол при вершине равен α. Найдите: а) высоту пирамиды; б) боковое ребро; в) угол Между боковой гранью и плоскостью основания; г) двугранный угол при боковом ребре пирами
257. Высота правильной треугольной пирамиды равна h, а двугранный угол при стороне основания равен 45°. Найдите площадь поверхности пирамиды.
258. Боковое ребро правильной четырехугольной пирамиды образует угол в 60° с плоскостью основания. Найдите площадь поверхности пирамиды, если боковое ребро равно 12 см.
259. В правильной четырехугольной пирамиде сторона основания равна 6 см, а угол наклона боковой грани к плоскости основания равен 60°. Найдите боковое ребро пирамиды.
260. В правильной треугольной пирамиде DABC через боковое ребро DC и высоту DO пирамиды проведена плоскость α. Докажите, что: а) ребро АВ перпендикулярно к плоскости α; б) перпендикуляр, проведенный из вершины С к апофеме грани ADB, является п
261. Докажите, что в правильной треугольной пирамиде скрещивающиеся ребра взаимно перпендикулярны.
262. Докажите, что плоскость, проходящая через высоту правильной пирамиды и высоту боковой грани, перпендикулярна к плоскости боковой грани.
264. Найдите площадь боковой поверхности правильной шестиугольной пирамиды, если сторона ее основания равна а, а площадь боковой грани равна площади сечения, проведенного через вершину пирамиды и большую диагональ основания.
265. В правильной треугольной пирамиде боковое ребро наклонено к плоскости основания под углом 60°. Через сторону основания проведена плоскость под углом 30° к плоскости основания. Найдите площадь сечения, если сторона основания равна 12 см.
266. Основанием пирамиды, высота которой равна 2 дм, а боковые ребра равны друг другу, является прямоугольник со сторонами 6 дм и 8 дм. Найдите площадь сечения, проведенного через диагональ основания параллельно боковому ребру.
267. Пирамида пересечена плоскостью, параллельной основанию. Докажите, что боковые ребра и высота пирамиды делятся этой плоскостью на пропорциональные части.
268. Плоскость, параллельная плоскости основания правильной четырехугольной пирамиды, делит высоту пирамиды в отношении 1:2, считая от вершины пирамиды. Апофема полученной усеченной пирамиды равна 4 дм, а площадь ее полной поверхности равна 186 дм2. Найди
270. Основаниями усеченной пирамиды являются правильные треугольники со сторонами 5 см и 3 см. Одно из боковых ребер перпендикулярно к плоскости основания и равно 1 см. Найдите площадь боковой поверхности усеченной пирамиды.
Глава III Многогранники. §1 Понятие многогранника. Призма.

228. Основанием наклонной призмы АВСА1В1С1 является равнобедренный треугольник ABC, в котором АС = АВ= 13 см, BС=10 см, а боковое ребро призмы образует с плоскостью основания угол в 45°. Проекцией вершины А1 является точка пересечения медиан треугольника
233. Основанием прямой призмы АВСA1B1C1 является прямоугольный треугольник ABC с прямым углом В. Через ребро ВВ1 проведено сечение BB1D1D, перпендикулярное к плоскости грани АA1C1C. Найдите площадь сечения, если AA1 = 10 см, AD = 27 см, DC= 12 см.
218. Докажите, что: а) у прямой призмы все боковые грани — прямоугольники; б) у правильной призмы все боковые грани — равные прямоугольники.
219. В прямоугольном параллелепипеде стороны основания равны 12 см и 5 см. Диагональ параллелепипеда образует с плоскостью основания угол в 45°. Найдите боковое ребро параллелепипеда.
220. Основанием прямого параллелепипеда является ромб с диагоналями 10 см и 24 см, а высота параллелепипеда равна 10 см. Найдите большую диагональ параллелепипеда.
221. Сторона основания правильной треугольной призмы равна 8 см, боковое ребро равно 6 см. Найдите площадь сечения, проходящего через сторону верхнего основания и противолежащую вершину нижнего основания.
222. Основанием прямой призмы является равнобедренная трапеция с основаниями 25 см и 9 см и высотой 8 см. Найдите двугранные углы при боковых ребрах призмы.
223. Через два противолежащих ребра куба проведено сечение, площадь которого равна 64 √2 см2. Найдите ребро куба и его диагональ.
224. Диагональ правильной четырехугольной призмы наклонена к плоскости основания под углом 60°. Найдите площадь сечения, проходящего через сторону нижнего основания и противолежащую сторону верхнего основания, если диагональ основания равна 4 √2 см.
225. Диагональ правильной четырехугольной призмы образует с плоскостью боковой грани угол в 30°. Найдите угол между диагональю и плоскостью основания.
226. В правильной четырехугольной призме через диагональ основания проведено сечение параллельно диагонали призмы. Найдите площадь сечения, если сторона основания призмы равна 2 см, а ее высота равна 4 см.
227. Основание призмы — правильный треугольник ABC. Боковое ребро АА1 образует равные углы со сторонами основания АС и АВ. Докажите, что: а) ВС⊥АА1; б) СС1В1В — прямоугольник.
229. В правильной n-угольной призме сторона основания равна а и высота равна h. Вычислите площадь боковой и полной поверхностей призмы, если: а) n = 3, а=10 см, h= 15 см; б) n = 4, а= 12 дм, h = 8 дм; в) n = 6, а =23 см, h = 5 дм; г) n = 5, а = 0,4 м, h =
230. Основание прямой призмы — треугольник со сторонами 5 см и 3 см и углом, равным 120°, между ними. Наибольшая из площадей боковых граней равна 35 см2. Найдите площадь боковой поверхности призмы.
231. Стороны основания прямого параллелепипеда равны 8 см и 15 см и образуют угол в 60°. Меньшая из площадей диагональных сечений* равна 130 см2. Найдите площадь поверхности параллелепипеда.
232. Диагональ прямоугольного параллелепипеда, равная d, образует с плоскостью основания угол φ, а с меньшей боковой гранью — угол α. Найдите площадь боковой поверхности параллелепипеда.
234. Основанием прямой призмы является прямоугольный треугольник. Через середину гипотенузы перпендикулярно к ней проведена плоскость. Найдите площадь сечения, если катеты равны 20 см и 21 см, а боковое ребро равно 42 см.
235. Основанием прямой призмы является прямоугольный треугольник с острым углом φ. Через катет, противолежащий этому углу, и через противоположную этому катету вершину основания проведено сечение, составляющее угол Θ с плоскостью основания. Найд
236. Докажите, что площадь боковой поверхности наклонной призмы равна произведению периметра перпендикулярного сечения** на боковое ребро.
237. Боковое ребро наклонной четырехугольной призмы равно 12 см, а перпендикулярным сечением является ромб со стороной 5 см. Найдите площадь боковой поверхности призмы.
238. В наклонной треугольной призме две боковые грани взаимно перпендикулярны, а их общее ребро, отстоящее от двух других боковых ребер на 12 см и 35 см, равно 24 см. Найдите площадь боковой поверхности призмы.
Глава III Многогранники. Дополнительные задачи

313. Стороны оснований правильной треугольной усеченной пирамиды равны 12 дм и 6 дм, а ее высота 1 дм. Найдите площадь боковой поверхности пирамиды.
288. Докажите, что число вершин любой призмы четно, а число ребер кратно 3.
289. Докажите, что площадь полной поверхности куба равна 2d2, где d — диагональ куба.
290. Угол между диагональю основания прямоугольного параллелепипеда, равной l, и одной из сторон основания равен φ. Угол между этой стороной и диагональю параллелепипеда равен 0. Найдите площадь боковой поверхности данного параллелепипеда.
291. В прямоугольном параллелепипеде диагональ, равная d, образует с плоскостью основания угол φ, а с одной из сторон основания — угол Θ. Найдите площадь боковой поверхности параллелепипеда.
292. В правильной четырехугольной призме сторона основания равна 6 см, боковое ребро равно 8 см. Найдите расстояние от стороны основания до не пересекающей ее диагонали призмы.
293. В правильной четырехугольной призме ABCDA1B1C1D1 диагонали B1D и D1B взаимно перпендикулярны. Докажите, что угол между диагоналями А1С и B1D призмы равен 60°.
294. Правильная четырехугольная призма пересечена плоскостью, содержащей две ее диагонали. Площадь полученного сечения равна So, а сторона основания равна а. Вычислите площадь боковой поверхности призмы.
295. Основанием наклонного параллелепипеда ABCDA1B1C1D1 является ромб. Боковое ребро СС1 составляет равные углы со сторонами основания CD и СВ. Докажите, что: a) CC1⊥BD; б) BB1D1D — прямоугольник; в) BD⊥АА1С1; г) плоскости АА1С1 и BB1D1 взаимно
296. Высота правильной треугольной призмы равна h. Плоскость α, проведенная через среднюю линию нижнего основания и параллельную ей сторону верхнего основания, составляет с плоскостью нижнего основания острый двугранный угол φ. Найдите площадь с
297. Основанием треугольной призмы АВСА1В1С1 является правильный треугольник ABC, BD — высота этого треугольника, а вершина А1 проектируется в его центр. Докажите, что: a) A1BD⊥АА1С1; б) АА1O⊥ВВ1С; в) грань ВВ1С1С — прямоугольник.
298. Основанием параллелепипеда с боковым ребром b является квадрат со стороной с. Одна из вершин верхнего основания равноудалена от всех вершин нижнего основания. Найдите площадь полной поверхности параллелепипеда.
299. Найдите высоту правильной треугольной пирамиды, если сторона основания равна т, а площадь боковой поверхности вдвое больше площади основания.
300. В правильной треугольной пирамиде DABC точки Е, F и Р — середины сторон ВС, АВ и AD. Определите вид сечения, проходящего через эти точки, и найдите его площадь, если сторона основания пирамиды равна с, боковое ребро равно b.
301. Двугранный угол при боковом ребре правильной треугольной пирамиды DABC равен 120°. Расстояние от вершины B до бокового ребра DA равно 16 см. Найдите апофему пирамиды.
302. Основанием пирамиды является параллелограмм со сторонами 3 см к 7 см и одной из диагоналей 6 см. Высота пирамиды проходит через точку пересечения диагоналей основания и равна 4 см. Найдите боковые ребра пирамиды.
303. Основанием пирамиды является ромб. Две боковые грани перпендикулярны к плоскости основания и образуют двугранный угол в 120°, а две другие боковые грани наклонены к плоскости основания под углом в 30°. Найдите площадь поверхности пирамиды, если ее вы
304. В правильной четырехугольной пирамиде плоский угол при вершине равен 60°. Докажите, что двугранный угол между боковой гранью и основанием пирамиды вдвое меньше двугранного угла при боковом ребре.
305. В правильной четырехугольной пирамиде высота равна h, плоский угол при вершине равен α. Найдите площадь боковой поверхности пирамиды.
306. Высота правильной четырехугольной пирамиды равна h и составляет угол φ с плоскостью боковой грани. Найдите площадь полной поверхности пирамиды.
307. В правильной пирамиде MABCD AM = b, AD = a. а) Постройте сечение пирамиды плоскостью α, проходящей через диагональ BD основания параллельно ребру MA, и найдите площадь сечения. б) Докажите, что точки М и С равноудалены от плоскости α.
308. Основанием пирамиды является ромб со стороной 5 см и меньшей диагональю 6 см. Высота пирамиды, равная 3,2 см,проходит через точку пересечения диагоналей ромба. Найдите высоты граней пирамиды.
309. Основанием пирамиды с равными боковыми ребрами является прямоугольник со сторонами 6 дм и 8 дм. Высота пирамиды равна 6 дм. Найдите площадь сечения, проведенного через меньшую сторону и середину высоты.
310. В пирамиде DABC ребро DA перпендикулярно к плоскости ABC. Найдите площадь боковой поверхности пирамиды, если АВ=АС = 25 см, BC = 40 см, АН = 8 см, где АН — высота пирамиды.
311. Основанием пирамиды DABC является треугольник со сторонами АС= 13 см, АВ = 15 см, СВ= 14 см. Боковое ребро DA перпендикулярно к плоскости основания и равно 9 см. а) Найдите площадь полной поверхности пирамиды. б) Докажите, что основание перпендикуляр
312. В правильной n-угольной пирамиде боковые грани составляют с плоскостью основания угол φ. Найдите тангенс угла между плоскостью основания и боковым ребром.
314. В правильной четырехуголькой усеченной пирамиде высота равна 63 см, апофема — 65 см, а стороны оснований относятся как 7:3. Найдите стороны оснований пирамиды.
315. Докажите, что центры граней правильного октаэдра являются вершинами куба.
316. Докажите, что центры граней правильного тетраэдра являются вершинами другого правильного тетраэдра.
317. Докажите, что центры граней куба являются вершинами правильного октаэдра.
318. Докажите, что сумма двугранного угла правильного тетраэдра и двугранного угла правильного октаэдра равна 180°.
319. Сколько плоскостей симметрии, проходящих через данную вершину, имеет правильный тетраэдр?
Глава IV. Векторы в пространстве § 2. Сложение и вычитание векторов. Умножение вектора на число

329. Назовите все векторы, образованные ребрами параллелепипеда ABCDA1B1C1D1, которые: а) противоположны вектору СВ; б) противоположны вектору B1A; в) равны вектору — DC; г) равны вектору — А1В1.
338. Дан параллелепипед ABCDA1B1C1D1. Докажите, что OA + OC1=OC+OA1, где О—произвольная точка пространства.
327. На рисунке 97 изображен параллелепипед ABCDA1B1C1D1. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов: а) AB + A1D1; б) AB + AD1; в) DA + B1B; г) DD1+DB; д) DB1+ ВС.
328. Дан тетраэдр ABCD. Докажите, что: а) АВ + BD=AC + CD; б) AB + BC = DC + AD; в) DC + BD = AC + BA.
330. Нарисуйте параллелепипед ABCDA1B1C1D1 и обозначьте векторы C1D1, BA1, AD соответственно через a,b,c. Изобразите на рисунке векторы: а) а — b; б) а —с; в) b — а; г) с —b; д) с — а.
331. Пусть ABCD — параллелограмм, а О — произвольная точка пространства. Докажите, что: а) ОВ — ОА = ОС — OD; б) OB — OC = DA.
332. На рисунке 97 изображен параллелепипед ABCDA1B1C1D1. Представьте векторы АВ1 и DK в виде разности двух векторов, начала и концы которых совпадают с отмеченными на рисунке точками.
333. В пространстве даны четыре точки А, В, С и D. Назовите вектор с началом и концом в данных точках, равный сумме векторов: а) (АВ + СА + DC) + (BC + CD); б) (АВ-АС) + DC.
334. Дан прямоугольный параллелепипед KLMNK1L1M1N1. Докажите, что: а) |MK + MM1| = |MK - MM1|; б) |K1L1 - NL1| = |ML +MM1|; в) |NL - M1L| = |K1N - LN|.
335. Упростите выражение: a) AB+MN+BC+CA+PQ+NM; б) FK+MQ+KP+AM+QK+PF; в) KM+DF+AC+FK+CD+CA+MP; г) AB+BA+CD+MN+DC+NM.
336. Даны точки A, В, С и D. Представьте вектор АВ в виде алгебраической суммы следующих векторов: а) AC, DC, BD; б) DA, DC, СВ; в) DA, CD, ВС.
337. Упростите выражение: a) OP - EP + KD - KA; б) AD + MP + EK - EP - MD; в) AC - BC - PM - AP + BM.
339. Дан параллелепипед ABCDA1B1C1D1. Укажите вектор х, начало и конец которого являются вершинами параллелепипеда, такой, что: a) DC + D1A1 + CD1 + x + A1C1 = DB; б) DA + x + D1B + AD1 + BA = DC.
340. Дана треугольная призма АВСА1В1С1. Укажите вектор х, начало и конец которого являются вершинами призмы, такой, что: а) АА1 - В1С - х = ВА; б) AC1 - ВВ1 +х=АВ; в) AB1 + x = AC - x + BC1.
341. Основанием четырехугольной пирамиды с вершиной Р является трапеция ABCD. Точка О — середина средней линии трапеции. Докажите, что PA + PB + PC + PD = 4 PO.
342. Точка Р — вершина правильной шестиугольной пирамиды. Докажите, что сумма всех векторов с началом в точке Р, образованных боковыми ребрами пирамиды, равна сумме всех векторов с началом в точке Р, образованных апофемами.
343. Известно, что AO = ½AB. Докажите, что точки А и В симметричны относительно точки О.
344. Диагонали куба ABCDA1B1C1D1 пересекаются в точке О. Найдите число k такое, что: a) AB = k⋅CD; б) AC1=k⋅AO; в) OB1=k⋅B1D.
345. Точки Е и F — середины оснований АВ и ВС параллелограмма ABCD, а О — произвольная точка пространства. Выразите: а) вектор ОА — ОС через вектор EF; б) вектор ОА — ОЕ через вектор DC.
346. Точки М и N — середины оснований АВ и CD трапеции ABCD, а О — произвольная точка пространства. Выразите вектор ОМ —ON через векторы АР и ВС.
347. Упростите выражение: а) 2(m+n)-3(4m-n)+m;б) m-3(n-2m+p)+5(p-4m).
348. Дан параллелепипед ABCDA1B1C1D1. Докажите, что AC1+B1D=2BC.
349. Три точки А, В и М удовлетворяют условию АМ = λ⋅MB, где λ≠— 1. Докажите, что эти точки лежат на одной прямой и для любой точки О пространства выполняется равенство.
350. Известно, что p = a + b + c, причем векторы a, b и c попарно не сонаправлены. Докажите, что |p| < |а| + |b| + |с|.
351. Векторы a и c, а также b и c коллинеарны. Докажите, что коллинеарны векторы: а) a + b и с; б) a - b и c; в) a + 3b и с; г) -a + 2b и с.
352. Векторы a + b и a - b коллинеарны. Докажите, что векторы а и b коллинеарны.
353. Векторы a + 2b и a - 3b коллинеарны. Докажите, что векторы a и b коллинеарны.
354. Докажите, что если векторы a + b и a - b не коллинеарны, то: а) векторы а и b не коллинеарны; б) векторы a + 2b и 2a - b не коллинеарны.
Глава V. Метод координат в пространстве. § 1. Координаты точки и координаты вектора.

415. Компланарны ли векторы: а) а {— 3; —3; 0}, i и j; б) b{2; 0; — 3}, i и j; в) с{1; 0; — 2}, i и k; г) d {1; — 1; 2}, е{ — 2; 0; 1} и f{5; —1; 0}; д) m {1; 0; 2}, n{1; 1; —1} и р {— 1; 2; 4}; е) q{0; 5; 3}, F {3; 3; 3} и s {1; 1; 4}?
435. Даны точки A (1; 0; k), В (— 1; 2; 3) и С (0; 0; 1). При каких значениях k треугольник ABC является равнобедренным?
400. Даны точки A (3; — 1; 0), В (0; 0; — 7), С (2; 0; 0), D ( — 4; 0; 3), E (0; — 1; 0), F(1;2;3), G (0; 5; -7), Н (-√5; √3; 0). Какие из этих точек лежат на: а) оси абсцисс; б) оси ординат; в) оси аппликат; г) плоскости Оху, д) плоскости Oyz
401. Найдите координаты проекций точек А(2; —3; 5), В (3; —5; ½) и C( — √3; —√2/2; √5-√3) на: а) координатные плоскости Oxz, Оху и Oyz; б) оси координат Ох, Оу и Oz.
402. Даны координаты четырех вершин куба ABCDA1B1C1D1: А (0; 0; 0), В (0; 0; 1), D (0; 1; 0) и А1 (1; 0; 0). Найдите координаты остальных вершин куба.
403. Запишите координаты векторов: a = 3i+2j—5k, b=—5i + 3k — k, c=i — j, d = j+k, m = k—i, n = 0,7k.
404. Даны векторы а {5; —1; 2}, b{-3; -1; 0}, c{0; -1; 0}, d (0; 0; 0). Запишите разложения этих векторов по координатным векторам i, j, k.
405. На рисунке 124 изображен прямоугольный параллелепипед, у которого ОА= 4, ОВ = 6, ОО1=5. Найдите координаты векторов ОА1, ОВ1, OO1, ОС, ОС1, ВС1, АС1, O1С в системе координат Oxyz.
406. Докажите, что каждая координата суммы (разности) двух векторов равна сумме (разности) соответствующих координат этих векторов.
407. Даны векторы а {3; —5; 2}, b{0; 7; —1}, с {⅔; 0; 0;} и d{ — 2,7; 3,1; 0,5}. Найдите координаты векторов: а) а+b; б) а + с; в) b+с; г) d+b; д) d + a; е) а+b+с; ж) b + а + d; з) а+b+c+d.
408. По данным рисунка 125 найдите координаты векторов АС, СВ, АВ, MN, NP, ВМ, ОМ, ОР, если ОА= 3, ОВ=7, ОС = 2, а М, N и Р — середины ребер АС, ОС и СВ.
409. Даны векторы а{5; —1; 1}, b { — 2; 1; 0}, с {0; 0,2; 0} и d {-⅓;2⅖; -1/7}. Найдите координаты векторов: а) а — b; б) b — а; в) а — с; г) d — а; д) с — d; е) а — b+с; ж) а — b — с; з) 2а; и) —3b; к) —6с; л) —⅓d; м) 0,2b.
410. Даны векторы a {— 1; 2; 0}, b{0; —5; —2} и с {2; 1; —3}. Найдите координаты векторов p=3b-2a+c и q=3c-2b+a.
411. Даны векторы а{ — 1; 1; 1}, b{0; 2; —2}, с { — 3; 2; 0} и d{ — 2; 1; —2}. Найдите координаты векторов: а) За + 2b —с; б) —а + 2с —d; в) 0,1а+ 3b +0,7с— 5d; г) (2а + 3b) — (а — 2b) + 2 (а-b).
412. Найдите координаты векторов, противоположных следующим векторам: i, j, k, а {2; 0; 0}, b { — 3; 5; —7), с { — 0,3; 0; 1,75}.
413. Коллинеарны ли векторы: а) а{3; 6; 8} и b{6; 12; 16); б) с{1; — 1; 3} и d {2; 3; 15}; в) i{1; 0; 0} и j{0; 1; 0}; г) m {0; 0; 0} и n {5; 7; -3}; д) p {⅓ -1; 5} и q {-1; -3; -15}?
414. Найдите значения m и n, при которых следующие векторы коллинеарны: а) а {15; m; 1} и b(18; 12; n); б) с {m; 0,4; —1} и d{-½;n;5}.
416. Даны векторы ОА{3; 2; 1}, OB {1; -3; 5} и OC{ -⅓0,75; -2¾}. Запишите координаты точек А, В и С, если точка О — начало координат.
417. Даны точки А (2; —3; 0), В (7; — 12; 18) и С ( — 8; 0; 5). Запишите координаты векторов ОА, ОВ и ОС, если точка О — начало координат.
418. Найдите координаты вектора АВ, если: а) A (3; —1; 2), В(2; — 1; 4); б) A (-2; 6; -2), В(3; - 1; 0); в) A (1; ⅚; ½), B(½⅓¼).
419. Вершины треугольника ABC имеют координаты: A (1; 6; 2), В (2; 3; — 1), С ( — 3; 4; 5). Разложите векторы АВ, ВС и СА по координатным векторам i, j и k.
420. Даны точки A (3; -1; 5), В (2; 3; -4), С(7; 0; -1) и D (8; —4; 8). Докажите, что векторы АВ и DC равны. Равны ли векторы ВС и AD?
421. Лежат ли точки A, В и С на одной прямой, если: а) А (3; -7; 8), В (-5; 4; 1), С (27; -40; 29); б) A (-5; 7; 12), В (4; -8; 3), С (13; -23; -6); в) A (-4; 8; -2), В ( - 3; -1; 7), С (-2; -10; -16)?
422. Лежат ли точки A, В, С и D в одной плоскости, если: а) А (-2; -13; 3), В(1; 4; 1), С (- 1; - 1; -4), D (0; 0; 0); б) А (0; 1; 0), В (3; 4; -1), С (-2; -3; 0), D (2; 0; 3); в) A (5; -1; 0), В (-2; 7; 1), С (12; -15; -7), D(1; 1; -2)?
423. Докажите, что точка пересечения медиан треугольника ABC с вершинами A (x1; y1; z1), В (x2; y2; z2), С (x3; y3; z3) имеет координаты
424. Точка М — середина отрезка АВ. Найдите координаты: а) точки М, если А (0; 3; —4), В ( — 2; 2; 0); б) точки В, если A (14; —8; 5), М (3; —2; —7); в) точки A, если B(0; 0; 2), М (— 12; 4; 15).
425. Середина отрезка АВ лежит на оси Ох. Найдите m и n, если: а) A ( — 3; m; 5), В (2; —2; n); б) А (1; 0,5; —4), В (1; m; 2n); в) A (0; m; n+1), В(1; n;-m+1); г) A (7; 2m+n; —n), В ( - 5; -3; m -3).
426. Найдите длину вектора АВ, если: а) A (— 1; 0; 2), В (1; — 2; 3); б) A (-35; -17; 20), В (-34; -5; 8).
427. Найдите длины векторов: а {5; —1; 7}, b {2 √3; —6; 1}, c = i+j+k, d=—2k, m = i — 2j.
428. Даны векторы а {3; —2; 1), b { — 2; 3; 1} и с { —3; 2; 1}. Найдите: а) |а + b|; б) |а| + |b|; в) |а| — |b|; г) |а — b|; д) |3с|; е) √14|c|; ж) |2а —Зс|.
429. Даны точки М ( — 4; 7; 0) и N (0; — 1; 2). Найдите расстояние от начала координат до середины отрезка MN.
430. Даны точки A (3/2; 1; — 2 ), В (2; 2; —3) и С (2; 0; — 1). Найдите: а) периметр треугольника АВС; б) медианы треугольника ABC.
431. Определите вид треугольника ABC, если: а) A (9; 3; —5), В (2; 10; -5), С (2; 3; 2); б) A (3; 7; -4), В (5; -3; 2), С (1; 3; — 10); в) A (5; -5; -1),В(5; -3; -1), С (4; -3;0); г) A (-5; 2; 0), В ( — 4; 3; 0), С (-5; 2; -2).
432. Найдите расстояние от точки A ( — 3; 4; —4) до: а) координатных плоскостей; б) осей координат.
433. На каждой из координатных плоскостей найдите такую точку, расстояние от которой до точки A ( — 1; 2; —3) является наименьшим среди всех расстояний от точек этой координатной плоскости до точки A.
434. На каждой из осей координат найдите такую точку, расстояние от которой до точки В (3; —4; √7) является наименьшим среди всех расстояний от точек этой оси до точки В.
436. Даны точки A (4; 4; 0), В (0; 0; 0), С (0; 3; 4) и D (1; 4; 4). Докажите, что ABCD — равнобедренная трапеция.
437. Найдите точку, равноудаленную от точек А (— 2; 3; 5) и В(3; 2; —3) и расположенную на оси: а) Ох; б) Оу; в) Oz.
438. Даны точки А (— 1; 2; 3), В ( — 2; 1; 2) и С (0; — 1; 1). Найдите точку, равноудаленную от этих точек и расположенную на координатной плоскости: а) Оху; б) Oyz; в) Ozx.
439. Даны точки О (0; 0; 0), А (4; 0; 0), В (0; 6; 0), С (0; 0; —2). Найдите: а) координаты центра и радиус окружности, описанной около треугольника АОВ; б) координаты точки, равноудаленной от вершин тетраэдра OABC.
440. Отрезок CD длины т перпендикулярен к плоскости прямоугольного треугольника ABC с катетами АС = b и ВС = a. Введите подходящую систему координат и с помощью формулы расстояния между двумя точками найдите расстояние от точки D до середины гипотенузы эт
Глава V. Метод координат в пространстве. § 2. Скалярное произведение векторов

475. В тетраэдре DABC DA = 5 см, АВ = 4 см, АС = 3 см, ∠BAC = 90°, ∠DAB= 60°, ∠DAC = 45°. Найдите расстояние от вершины А до точки пересечения медиан треугольника DBC.
441. Дан куб ABCDA1B1C1D1. Найдите угол между векторами: а) В1В и В1С; б) DA и B1D1; в) А1С1 и А1В; г) ВС и АС; д) ВВ1 и АС; е) В1С и AD1; ж) A1D1 и ВС; з) АА1 и С1С.
442. Угол между векторами АВ и CD равен φ. Найдите углы BA^DC, BA^CD, АВ^DC.
443. Ребро куба ABCDA1B1C1D1 равно а, точка O1 — центр грани A1B1C1D1. Вычислите скалярное произведение векторов: а) AD и В1С1; б) АС и С1А1; в) D1B и АС; г) ВА1 и ВС1; д) A1O1 и А1С1; е) D1O1 и В1O1; ж) ВО1 и С1В.
444. Даны векторы а {1; —1; 2),b{—1; 1; 1} и с {5; 6; 2}. Вычислите ас, ab, bc, aa, √bb.
445. Даны векторы а = 3i — 5j + k и b=j — 5k. Вычислите: a) аb; б) ai; в) bj; г) (a + b)k; д) (а — 2b) (k + i— 2j).
446. Даны векторы а {3; —1; 1}, b{—5; 1;0} и c{— 1; —2; 1}. Выясните, какой угол (острый, прямой или тупой) между векторами: а) а и b; б) b и c; в) a и c.
447. Дан вектор а {3: —5; 0}. Докажите, что: a) a^i<90°; б) а^j>90°; в) a^k = 90°.
448. Даны векторы а {— 1; 2; 3} и b {5, х; — 1} При каком значении х выполняется условие: a) ab = 3; б) cb= — 1; в) a⊥b?
449. Даны векторы a=mi+3j+4k и b=4i+mj-7k. При каком значении m векторы а и b перпендикулярны?
450. Даны точки А (0; 1; 2), В (√2; 1; 2), С (√2; 2; 1) и D (0; 2; 1). Докажите, что ABCD — квадрат.
451. Вычислите угол между векторами: а) а{2; —2; 0} и b {3; 0; -3}; 6) а {√2; √2; 2} и b {-3; -3; 0}; в) a{0; 5; 0} и b{0; — √З; 1); г) а {—2,5; 2,5; 0} и b (-5; 5; 5 √2}; д) а{ — √2; — √2; —2} и b{√2/2 ;√2/
452. Вычислите углы между вектором а {2; 1; 2} и координатными векторами.
453. Даны точки А (1; 3; 0), В (2; 3; — 1) и С (1; 2; — 1). Вычислите угол между векторами СА и СВ.
454. Найдите углы, периметр и площадь треугольника, вершинами которого являются точки A(1; -1; 3;), В (3; -1; 1) и С(- 1; 1; 3).
455. Дан куб ABCDA1B1C1D1. Вычислите косинус угла между векторами: а) АА1 и AC1; б) BD1 и DB1; в) DB и АС1.
456. Дан прямоугольный параллелепипед ABCDA1B1C1D1, в котором АВ = 1, ВС = СС1 = 2. Вычислите угол между векторами DB1 и BC1.
457. Известно, что а^с = b^с = 60°, |а| = 1, |b| = |с| = 2. Вычислите (а + b) с.
458. Докажите справедливость равенства (a + b + с) d = ad + bd + cd.
459. Векторы а и b перпендикулярны к вектору с, ab= 120°, |а| = |b| = |с| = 1. Вычислите: а) скалярные произведения (а+b+с) (2b) и (а — b+с)(а — с); б) |а — b| и |a+b-c|.
460. Докажите, что координаты ненулевого вектора в прямоугольной системе координат равны {|a|cosφ1; |a|cosφ2; |a|cosφ3}, где φ1=a^i, φ2=a^j, φ3=a^k.
461. Все ребра тетраэдра ABCD равны друг другу. Точки М и N — середины ребер AD и ВС. Докажите, что MN AD = MN ВС = 0.
462. В параллелепипеде ABCDA1B1C1D1 AA1=AB = AD=1, ∠DAB = 60°, ∠A1AD=∠A1AB = 90°. Вычислите: a) BA⋅D1C1; б) BC1⋅D1B; в) AC1⋅AC1; г) |DB1|; д) |A1C|; e) cos (DA1^D1B); ж) cos (AC1^DB1).
463. В тетраэдре ABCD противоположные ребра AD и ВС, а также BD и АС перпендикулярны. Докажите, что противоположные ребра CD и АВ также перпендикулярны.
464. Вычислите угол между прямыми А В и CD, если: а) А (3; -2; 4), В (4; -1; 2), С (6; -3; 2), D (7; -3; 1); б) A (5; -8; -1), В (6; -8; -2), С (7; -5; -11), D (7; -7; -9); в) A(1; 0; 2), В (2; 1; 0), С (0; -2; -4), D ( - 2; -4; 0); г) А (-6; -15; 7), В (
465. Дана правильная треугольная призма АВСA1B1C1, в которой АА1=√2АВ (рис. 132,а). Найдите угол между прямыми АС1 и А1В.
466. В кубе ABCDA1B1C1D1 точка М лежит на ребре АА1, причем АМ:МА1=3:1, а точка N— середина ребра ВС. Вычислите косинус угла между прямыми: a) MN и DD1; б) MN и BD; в) MN и B1D; г) MN и А1С.
467. В прямоугольном параллелепипеде ABCDA1B1C1D1 АВ = ВС=½АА1. Найдите угол между прямыми: a) BD и CD1; б) АС и АС1
468. В прямоугольном параллелепипеде ABCDA1B1C1D1 АВ = 1, ВС=2, BB1=3. Вычислите косинус угла между прямыми: а) АС и D1B; б) AB1 и ВС1; в) A1D и АС1.
469. В кубе ABCDA1B1C1D1 диагонали грани ABCD пересекаются в точке N, а точка М лежит на ребре A1D1, причем A1M:MD1 = 1:4. Вычислите синус угла между прямой MN и плоскостью грани: a) ABCD; б) DD1C1C; в) AA1D1D.
470. В тетраэдре ABCD ∠ABD= ∠ABC= ∠DBC = 90°, АВ = BD = 2, ВС= 1. Вычислите синус угла между прямой, проходящей через середины ребер AD и ВС, и плоскостью грани: a) ABD; б) DBC; в) ABC.
471. Докажите, что угол между скрещивающимися прямыми, одна из которых содержит диагональ куба, а другая — диагональ грани куба, равен 90°.
472. Дан куб MNPQM1N1P1Q1. Докажите, что прямая РМ1 перпендикулярна к плоскостям MN1Q1 и QNP1.
473. Лучи ОА, ОВ и ОС образуют три прямых угла АОВ, АОС и ВОС. Найдите угол между биссектрисами углов СОА и АОВ.
474. В прямоугольном параллелепипеде ABCDA1B1C1D1 ∠BAC1 = ∠DAC1=60°. Найдите φ= ∠A1AC1.
476. Угол между диагональю АС1 прямоугольного параллелепипеда ABCDA1B1C1D1 и каждым из ребер АВ и AD равен 60°. Найдите ∠САС1.
477. Проекция точки К на плоскость квадрата ABCD совпадает с центром этого квадрата. Докажите, что угол между прямыми АК и BD равен 90°.
Глава V. Метод координат в пространстве. § 3. Движения

483. При зеркальной симметрии относительно плоскости α плоскость β отображается на плоскость β1. Докажите, что если: а) β||α, то β1||α; б) β⊥α, то β1 совпадает с β.
478. Найдите координаты точек, в которые переходят точки А(0; 1; 2), В (3; — 1; 4), С(1; 0; —2) при: а) центральной симметрии относительно начала координат; б) осевой симметрии относительно координатных осей; в) зеркальной симметрии относительно координат
479. Докажите, что при центральной симметрии: а) прямая, не проходящая через центр симметрии, отображается на параллельную ей прямую; б) прямая, проходящая через центр симметрии, отображается на себя.
480. Докажите, что при центральной симметрии: а) плоскость, не проходящая через центр симметрии, отображается на параллельную ей плоскость; б) плоскость, проходящая через центр симметрии, отображается на себя.
481. Докажите, что при осевой симметрии: а) прямая, параллельная оси, отображается на прямую, параллельную оси; б) прямая, образующая с осью угол φ, отображается на прямую, также образующую с осью угол φ.
482. При зеркальной симметрии прямая a отображается на прямую а1. Докажите, что прямые a и a1 лежат в одной плоскости.
484. Докажите, что при параллельном переносе на вектор р, где р≠0: а) прямая, не параллельная вектору р и не содержащая этот вектор, отображается на параллельную ей прямую; б) прямая, параллельная вектору р или содержащая этот вектор, отображается на с
485. Треугольник A1B1C1 получен параллельным переносом треугольника ABC на вектор р. Точки M1 и М — соответственно точки пересечения медиан треугольников A1B1C1 и ABC. Докажите, что при параллельном переносе на вектор р точка М переходит в точку М1.
486. Докажите, что при движении: а) прямая отображается на прямую; б) плоскость отображается на плоскость.
487. Докажите, что при движении: а) отрезок отображается на отрезок; б) угол отображается на равный ему угол.
488. Докажите, что при движении: а) параллельные прямые отображаются на параллельные прямые; б) параллельные плоскости отображаются на параллельные плоскости.
489. Докажите, что при движении: а) окружность отображается на окружность того же радиуса; б) прямоугольный параллелепипед отображается на прямоугольный параллелепипед с теми же измерениями.


 


Категория: Геометрия | Добавил: Админ | Теги: Атанасян
Просмотров: | Загрузок: 0 | Рейтинг: 0.0/0
Смотрите также:

ГДЗ по геометрии 10 класс Атанасян скачать бесплатно

Всего комментариев: 0
avatar