Главная » Файлы » 11 класс » Геометрия

ГДЗ по геометрии 11 класс Погорелов

Если у вас возникли трудности при выполнении домашнего задания по предмету Геометрия, то ГДЗ по геометрии 11 класс Погорелов поможет вам. С помощью данного решебника вы сможете решить задания 11 класс. Книга ГДЗ по геометрии 11 класс Погорелов позволит вам найти правильное решение онлайн и исправить ошибки.

Уважаемые посетители сайта, если вы не согласны с той информацией которая представлена на данной странице или считаете ее не правильной, не стоит попросту тратить свое время на написание негативных высказываний, вы можете помочь друг другу, для этого присылайте в комментарии свое "правильное" решение и мы его скорее всего опубликуем.

12.09.2014, 17:23
 

§ 16. Параллельность прямых и плоскостей

7. Через конец А отрезка АВ проведена плоскость. Через конец В и точку С этого отрезка проведены параллельные прямые, пересекающие плоскость в точках В1 и С1 Найдите длину отрезка ВВ1 если:1) СС1 = 15см, АС : ВС = 2 : 3;2) СС1 = 8,1см, АВ : АС = 1
13. Дан треугольник АВС. Плоскость, параллельная прямой АВ, пересекает сторону АС этого треугольника в точке А1, а сторону ВС — в точке В1.
18. Докажите, что если прямая пересекает одну из двух параллельных плоскостей, то она пересекает и другую.
30. Три прямые, проходящие через одну точку, пересекают данную плоскость в точках А, В, С, а параллельную ей плоскость в точках А1, В1, С1. Докажите подобие треугольников АВС и А1В1С1.
1. Докажите, что если прямые АВ и CD скрещивающиеся, то прямые АС и BD тоже скрещивающиеся.
2. Можно ли через точку С, не принадлежащую скрещивающимся прямым а и b, провести две различные прямые, каждая из которых пересекает прямые а и b? Объясните ответ.
3. Докажите, что все прямые, пересекающие две данные параллельные прямые, лежат в одной плоскости.
4. Прямые а и b пересекаются. Докажите, что все прямые, параллельные прямой b и пересекающие прямую а, лежат в одной плоскости.
5. Через концы отрезка АВ и его середину М проведены параллельные прямые, пересекающие некоторую плоскость в точках А1 В1 и M1. Найдите длину отрезка ММ1, если отрезок АВ не пересекает плоскость и если: 1) АА1 = 5 м, ВВ1 = 7 м; 2) АА1 = 3,6 дм, ВВ1
6. Решите предыдущую задачу при условии, что отрезок АВ пересекает плоскость.
8. Даны параллелограмм и не пересекающая его плоскость. Через вершины параллелограмма проведены параллельные прямые, пересекающие данную плоскость в точках А1, В1, С1 и D1. Найдите длину отрезка DD1, если: 1) АА1 = 2 м, ВВ1 = 3 м, СС1 = 8 м; 2) АА1
9. Прямые а и b не лежат в одной плоскости. Можно ли провести прямую с, параллельную прямым а и b?
10. Точки А, В, С, D не лежат в одной плоскости. Докажите, что прямая, проходящая через середины отрезков АВ и ВС, параллельна прямой, проходящей через середины отрезков AD и CD.
11. Докажите, что середины сторон пространственного четырехугольника являются вершинами параллелограмма (вершины пространственного четырехугольника не лежат в одной плоскости).
12. Даны четыре точки А, В, С, D, не лежащие в одной плоскости. Докажите, что прямые, соединяющие середины отрезков АВ и CD, АС и BD, AD и BC, пересекаются в одной точке.
14. Через данную точку проведите прямую, параллельную каждой из двух данных пересекающихся плоскостей.
15. Докажите, что если плоскость пересекает одну из двух параллельных прямых, то она пересекает и другую.
16. Докажите, что через любую из двух скрещивающихся прямых можно провести плоскость, параллельную другой прямой.
17. Докажите, что если две плоскости, пересекающиеся по прямой а, пересекают плоскость α по параллельным прямым, то прямая а параллельна плоскости α.
19. Докажите, что через две скрещивающиеся прямые можно провести параллельные плоскости.
20. Через данную точку пространства проведите прямую, пересекающую каждую из двух скрещивающихся прямых. Всегда ли это возможно?
21. Докажите, что геометрическое место середины отрезков с концами на двух скрещивающихся прямых есть плоскость, параллельная этим прямым.
22. Даны четыре точки А, В, С, D, не лежащие в одной плоскости. Докажите, что любая плоскость, параллельная прямым АВ и CD, пересекает прямые АС, AD, BD и ВС в вершинах параллелограмма.
23. Плоскости α и β параллельны плоскости γ Могут ли плоскости α и β пересекаться?
24. Плоскости α и β пересекаются. Докажите, что любая плоскость γ пересекает хотя бы одну из плоскостей α, β.
25. Докажите, что все прямые, проходящие через данную точку параллельно данной плоскости, лежат в одной плоскости.
26. Через данную точку проведите плоскость, параллельную каждой из двух пересекающихся прямых. Всегда ли это возможно?
27. Параллелограммы ABCD и ABC1D1 лежат в разных плоскостях. Докажите, что четырехугольник, CDD1C1 тоже параллелограмм.
28. Через вершины параллелограмма ABCD. лежащего в одной из двух параллельных плоскостей, проведены параллельные прямые, пересекающие вторую плоскость в точках А1, В1, С1, D1. Докажите, что четырехугольник А1В1С1D1 тоже параллелограмм.
29. Через вершины треугольника АВС, лежащего в одной из двух параллельных плоскостей, проведены параллельные прямые, пересекающие вторую плоскость в точках А1, В1, С1. Докажите равенство треугольников АВС и А1В1С1.
31. Докажите, что если четыре прямые, проходящие через точку А, пересекают плоскость α в вершинах параллелограмма, то они пересекают любую плоскость, параллельную а и не проходящую через А, тоже в вершинах параллелограмма.
32. Даны две параллельные плоскости. Через точки А и В одной из этих параллельных плоскостей проведены параллельные прямые, пересекающие вторую плоскость в точках А1 и В1. Чему равен отрезок А1В1, если АВ = а?
33. Даны две параллельные плоскости α1 и α2 и точка А, не лежащая ни в одной из этих плоскостей. Через т. А проведена произвольная прямая. Пусть Х1
34. Точка А лежит вне плоскости α, Х — произвольная точка плоскости α, Х1 точка отрезка АХ, делящая его в отношении m : n. Докажите, что геометрическое место точек Х1 есть плоскость, по параллельная плоскости α.
35. Даны три параллельные плоскости α1, α2, α3. Пусть Х1, Х2, Х3 — точки пересечения этих плоскостей с произвольной прямой. Докажите, что отношение длин отрезков Х1Х2 : Х2Х3 не зависит от прямой, т.е. одинаково для любых двух прямых.
36. Даны четыре параллельные прямые. Докажите, что если какая-нибудь плоскость пересекает эти прямые в вершинах параллелограмма, то любая плоскость, не параллельная этим прямым, пересекает их в вершинах некоторого параллелограмма.
37. Дана параллельная проекция треугольника. Как построить проекции медиан этого треугольника?
38. Дана параллельная проекция треугольника. Чем изобразится проекция средней линии треугольника?
39. Может ли при параллельном проектировании параллелограмма получиться трапеция? Объясните ответ.
40. Может ли проекция параллелограмма при параллельном проектировании быть квадратом?
41. Докажите, что параллельная проекция центрально-симметричной фигуры также является центрально-симметричной фигурой.
42. Дана параллельная проекция окружности и ее диаметра. Как построить проекцию перпендикулярного диаметра?
§17. Перпендикулярность прямых и плоскостей

8. Через вершину острого угла прямоугольного треугольника АВС с прямым углом С проведена прямая AD, перпендикулярная плоскости треугольника. Найдите расстояние от точки D до вершин В и С, если АС = а, ВС = b, AD = с.
20. В равнобедренном треугольнике основание и высота равны 4 м. Данная точка находится на расстоянии 6 м от плоскости треугольника и на равном расстоянии от его вершин. Найдите это расстояние.
24. Из точки к плоскости проведены две наклонные. Найдите длины наклонных, если:
25. Из точки к плоскости проведены две наклонные, равные 23 см и 33 см. Найдите расстояние от этой точки до плоскости, если проекции наклонных относятся как 2 : 3.
29. Из концов отрезка АВ, параллельного плоскости, проведены перпендикуляр АС и наклонная BD, перпендикулярная отрезку АВ. Чему равно расстояние CD, если АВ = а, АС = b, BD = с?
40. Через сторону параллелограмма проведена плоскость на расстоянии а от противолежащей стороны. Найдите расстояние от точки пересечения диагоналей параллелограмма до этой плоскости.
59. Из точек А и В, лежащих в двух перпендикулярных плоскостях, опущены перпендикуляры АС и BD на прямую пересечения плоскостей. Найдите длину отрезка АВ, если:1) АС = 6 м, BD = 7 м, CD = 6 м;2) АС = 3 м, BD = 4 м, СD = 12 м;3) AD = 4 м, ВС =
1. Докажите. что через любую точку прямой в пространстве можно провести перпендикулярную ей прямую.
2. Докажите, что через любую точку прямой в пространстве можно провести две различные перпендикулярные ей прямые.
3. Прямые АВ, АС и AD попарно перпендикулярны. Найдите отрезок CD, если: 1) АВ = 3 см, ВС = 7 см, AD = 1,5 см; 2) BD = 9 см, ВС = 16 см, AD = 5 см; 3) АВ = b, ВС = а, AD = d; 4) BD = с, ВС = а, AD = d.
4. Стороны четырехугольника ABCD и прямоугольника А1B1C1D1 соответственно параллельны. Докажите, что ABCD — прямоугольник.
5. Докажите, что через точку, не лежащую в данной плоскости, нельзя провести более одной прямой, перпендикулярной этой плоскости.
6. Через центр описанной около треугольника окружности проведена прямая, перпендикулярная плоскости треугольника. Докажите, что каждая точка этой прямой равноудалена от вершины треугольника.
7. Через вершину А прямоугольника ABCD проведена прямая АК, перпендикулярная его плоскости. Расстояние от точки К до других вершин прямоугольника равны 6 м, 7 м и 9 м. Найдите отрезок АК.
9. Докажите, что через данную точку прямой можно провести одну и только одну перпендикулярную ей плоскость.
10. Через точку А прямой а проведены перпендикулярные ей плоскость β и прямая b. Докажите, что прямая b лежит в плоскости β.
11. Докажите, что через данную точку плоскости можно провести одну и только одну перпендикулярную ей прямую.
12. Докажите, что через любую точку А можно провести прямую, перпендикулярную данной плоскости α.
13. Через вершину квадрата ABCD проведена прямая ВМ, перпендикулярная его плоскости. Докажите, что: 1) прямая AD перпендикулярна плоскости прямых АВ и ВМ; 2) прямая CD перпендикулярна плоскости прямых ВС и ВМ.
14. Через точки А и В проведены прямые, перпендикулярные плоскости α, пересекающие ее в точках С и D соответственно. Найдите расстояние между точками А и В, если АС = 3 м, BD = 2 м, CD = 2,4 м и отрезок АВ не пересекает плоскость α.
15. Верхние концы двух вертикально стоящих столбов, удаленных на расстояние 3,4м, соединены перекладиной. Высота одного столба 5,8 м, а другого — 3,9 м. Найдите длину перекладины.
16. Телефонная проволока длиной 15 м протянута от телефонного столба, где она прикреплена на высоте 8 м, от поверхности земли, к дому, где ее прикрепили на высоте 20 м. Найдите расстояние между домом и столбом, предполагая, что проволока не провисает.
17. Точка А находится на расстоянии а от вершин равностороннего треугольника со стороной а. Найдите расстояние от точки А до плоскости треугольника.
18. Из точки S вне плоскости α проведены к ней три равные наклонные SA, SB, SC и перпендикуляр SO. Докажите, что основание перпендикуляра О является центром окружности, описанной около треугольника АВС.
19. Стороны равностороннего треугольника равны 3 м. Найдите расстояние до плоскости треугольника от точки, которая находится на расстоянии 2 м от каждой из его вершин.
21. Расстояния от точки А до вершин квадрата равны а. Найдите расстояние от точки А до плоскости квадрата, если сторона квадрата равна b.
22. Найдите геометрическое место оснований наклонных данной длины, проведенных из данной точки к плоскости.
23. Из точки к плоскости проведены две наклонные, равные 10см и 17см. Разность проекций этих наклонных равна 9см. Найдите проекции наклонных.
26. Докажите, что если прямая параллельна плоскости, то все ее точки находятся на одинаковом расстоянии от плоскости.
27. Через вершину прямого угла С прямоугольного треугольника АВС проведена плоскость, параллельная гипотенузе, на расстоянии 1 м от нее. Проекция катетов на эту плоскость равны 3 м и 5 м. Найдите гипотенузу.
28. Через одну сторону ромба проведена плоскость на расстоянии 4 м от противолежащей стороны. Проекции диагоналей на эту плоскость равны 8 м и 2 м. Найдите проекции этих сторон.
30. Докажите, что расстояние от всех точек плоскости до параллельной плоскости одинаковы.
31. Расстояние между двумя параллельными плоскостями равно а. Отрезок длины b своими концами упирается в эти плоскости. Найдите проекцию отрезка на каждую из плоскостей.
32. Два отрезка длин а и b упираются концами в две параллельные плоскости. Проекция первого отрезка (длины а) на плоскость равна с. Найдите проекцию второго отрезка.
33. Концы данного отрезка, не пересекающего плоскость, удалены от нее на 0,3 м и 0,5 м. Как удалена от плоскости точка, делящая данный отрезок в отношении 3 : 7?
34. Через середину отрезка проведена плоскость. Докажите, что концы отрезка находятся на одинаковом расстоянии от этой плоскости.
35. Через диагональ параллелограмма проведена плоскость. Докажите, что концы другой диагонали находятся на одинаковом расстоянии от этой плоскости.
36. Найдите расстояние от середины отрезка АВ до плоскости, не пересекающей этот отрезок, если расстояние от точек А и В до плоскости равны: 1) 3,2 см и 5,3 см; 2) 7,4 см и 6,1 см; 3) а и b.
37. Решите предыдущую задачу, считая. что отрезок АВ пересекает плоскость.
38. Отрезок длины 1 м пересекает плоскость, концы его удалены от плоскости на 0,5 м и на 0,3 м. Найдите длину проекции отрезка на плоскость.
39. Через основание трапеции проведена плоскость, отстающая от другого основания на расстояние а. Найдите расстояние от точки пересечения диагоналей трапеции до этой плоскости. если основания трапеции относятся как m : n.
41. Из вершины квадрата восстановлен перпендикуляр к его плоскости. Расстояния от конца этого перпендикуляра до других вершин квадрата равны а и b (а < b). Найдите длину перпендикуляра и сторону квадрата.
42. Из вершины прямоугольника восстановлен перпендикуляр к его плоскости. Расстояние от конца этого перпендикуляра до других вершин прямоугольника равны а, b, с (а < c, b < c). Найдите длину перпендикуляра и стороны прямоугольника.
43. Из данной точки к плоскости проведены две наклонные длиной 2 м. найдите расстояние от точки до плоскости, если наклонные образуют угол 60°, а их проекции перпендикулярны.
44. Из точки, отстоящей от плоскости на расстояние 1 м, проведены две равные наклонные. Найдите расстояние между основаниями наклонных, если известно, что наклонные перпендикулярны и образуют с перпендикуляром к плоскости углы, равные 60°.
45. Через центр вписанной в треугольник окружности проведена прямая, перпендикулярная плоскости треугольника. Докажите, что каждая точка этой прямой равноудалена от сторон треугольника.
46. К плоскости треугольника из центра вписанной в него окружности радиуса 0,7 м восстановлен перпендикуляр длиной 2,4 м. Найдите расстояние от конца этого перпендикуляра до сторон треугольника.
47. Расстояние от данной точки до плоскости треугольника равно 1,1 м, а до каждой из его сторон — 6,1 м. Найдите радиус окружности, вписанной в этот треугольник.
48. Из вершины равностороннего треугольника АВС восстановлен перпендикуляр AD к плоскости треугольника. Найдите расстояние от точки D до стороны ВС, если AD = 13 см, ВС = 6 см.
49. Через конец А отрезка АВ длины b проведена плоскость, перпендикулярная отрезку, и в этой плоскости проведена прямая. Найдите расстояние от точки В до прямой, если расстояние от точки А до прямой равно а.
50. Расстояния от точки А до всех сторон квадрата равны а. Найдите расстояние от точки А до плоскости квадрата, если диагональ квадрата равна d.
51. Точка М, лежащая вне плоскости данного прямого угла, удалена от вершины угла на расстояние а, а от его сторон на расстояние b. Найдите расстояние от точки М до плоскости угла.
52. Дан равнобедренный треугольник с основанием 6 м и боковой стороной 5 м. Из центра вписанного круга восставлен перпендикуляр к плоскости треугольника длиной 2 м. Найдите расстояние от конца этого перпендикуляра до сторон треугольника.
53. Из вершины прямого угла С треугольника АВС восставлен перпендикуляр CD к плоскости треугольника. Найдите расстояние от точки D до гипотенузы треугольника, если АВ= а, ВС=Ь, CD= с.
54. Даны прямая а и плоскость α. Проведите через прямую а плоскость, перпендикулярную плоскости α.
55. Даны прямая а и плоскость α. Докажите, что все прямые, перпендикулярные плоскости α и пересекающие прямую а, лежат в одной плоскости, перпендикулярной плоскости α.
56. Из вершин А и В равностороннего треугольника АВС восстановлены перпендикуляры АА1 и ВВ1 к плоскости треугольника. Найдите расстояние от вершины С до середины отрезка А1B1, если АВ = 2 м, СА1 = 3 м; СВ1 = 7 м и отрезок А1B1 не пересекает плоскость треу
57. Из вершин А и В острых углов прямоугольного треугольника АВС восставлены перпендикуляры АА1 и ВВ1 к плоскости треугольника. Найдите расстояние от вершины С до середины отрезка А1В1, если А1С=4 м, А1А=3 м, В1С = 6 м, В1В = 2 м и отрезок А1В1 не пересек
58. Докажите, что если прямая, лежащая в одной из двух перпендикулярных плоскостей, перпендикулярна линии их пересечения, то она перпендикулярна и другой плоскости.
60. Точка находится на расстоянии а и b от двух перпендикулярных плоскостей. Найдите расстояние от этой точки до прямой пересечения плоскостей.
61. Плоскости α и β перпендикулярны. В плоскости α взята точка А, расстояние от которой до прямой с (линия пересечения плоскостей) равно 0,5 м. В плоскости в проведена прямая b, параллельная прямой с и отстоящая от нее на 1,2 м. Найдите р
62. Перпендикулярные плоскости а и в пересекаются по прямой с. В плоскости а проведена прямая а || с, в плоскости в — прямая b || с. Найдите расстояние между прямыми а и b, если расстояние между прямыми а и с равно 1,5 м, а между прямыми b и с — 0,8 м.
§18. Декартовы координаты и векторы в пространстве

13. Найдите координаты вершины D параллелограмма ABCD, если координаты трех других вершин известны:
36. Наклонная равна а. Чему равна проекция этой наклонной на плоскость, если наклонная составляет с плоскостью угол, равный: 1) 45°; 2) 60°; 3) 30°?
58. Векторы а^, b^ , c^ единичной длины образуют попарно углы 60°. Найдите угол между векторами:
1. Где лежат те точки пространства, для которых координаты х и у равны нулю?
2. Даны точки А(1;2;3), В(0;1;2), С(0;0;3), D(1;2;0). Какие из этих точек лежат: 1) в плоскости ху; 2) на оси z; 3) в плоскости yz?
3. Дана точка А(1;2;3). Найдите основание перпендикуляров, опущенных из этой точки на координатные оси и координатные плоскости.
4. Найдите расстояния от точки (1;2;-3) до: 1) координатных плоскостей; 2) осей координат; 3) начала координат.
5. В плоскости ху найдите точку D(x;y;0), равноудаленную от трех данных точек: А(0;1;-1), В(-1;0;1), С(0;-1;0).
6. Найдите точки, равноотстоящие от точек (0;0;1), (0;1;0), (1;0;0) и отстоящие от плоскости yz на расстояние 2.
7. На оси х найдите точку С(х;0;0), равноудаленную от двух точек А(1;2;3), В(-2;1;3).
8. Составьте уравнение геометрического места точек пространства, равноудаленных от точки А(1;2;3) и начала координат.
9. Докажите, что четырехугольник ABCD с вершинами в точках А(1;3;2), В(0;2;4), с(1;1;4), D(2;2;2) является параллелограммом.
10. Докажите, что четырехугольник ABCD является параллелограммом, если:
11. Докажите, что четырехугольник ABCD является ромбом, если:
12. Даны один конец отрезка А(2;3;-1) и его середина С(1;1;1). Найдите второй конец отрезка В(х;у;z).
14. Докажите, что середина отрезка с концами в точках А(а;с;-Ь) и В(-а;d;b) лежит на оси у.
15. Докажите, что середина отрезка с концами в точках С(a;b;c) и D(p;q;-c) лежит в плоскости ху.
16. Докажите, что преобразование симметрии относительно координатной плоскости ху задается формулами х' = х, у' = у, z' = -z.
17. Даны точки (1;2;3), (0;-1;2), (1;0;-3). Найдите точки, симметричные данным относительно координатных плоскостей.
18. Даны точки (1;2;3), (0;—1;2), (1;0;—3). Найдите точки, симметричные им относительно начала координат.
19. Докажите, что преобразование симметрии относительно точки есть движение.
20. Докажите, что преобразование симметрии относительно плоскости есть движение.
21. Докажите, что при движении в пространстве круг переходит в круг того же радиуса.
22. Докажите, что при движении в пространстве три точки, лежащие на прямой, переходят в три точки, также лежащие на одной прямой.
23. Найдите значения а, b, c в формулах параллельного переноса х' = х + а, у' = у + b, z' = z + c, если при этом параллельном переносе точка А(1;0;2) переходит в точку А'(2;1;0).
24. При параллельном переносе точка А(2;1;-1) переходит в точку А'(1;-1;0). В какую точку переходит начало координат?
25. Существует ли параллельный перенос, при котором точка А переходит в точку В, а точка С — в точку D, если: 1) А(2;1;0), В(1;0;1), С(3; -2;1), D(2;-3;0); 2) А(-2;3;5), В(1;2;4), С(4;-3;6), D(7;-2;5); 3) А(0;1;2), В(-1;0;1), С(3;-2;2), D(2;-3;1)
26. Докажите, что при параллельном переносе параллелограмм переходит в равный ему параллелограмм.
27. Четыре параллельные прямые пересекают параллельные плоскости в вершинах параллелограммов ABCD и A1B1C1D1 соответственно. Докажите, что параллелограммы ABCD и A1B1C1D1 совмещаются параллельным переносом.
28. Докажите, что преобразование гомотетии в пространстве является преобразованием подобия.
29. Три прямые, проходящие через точку S, пересекают данную плоскость в точках А, В, С, а параллельную ей плоскость в точках А1, В1, С1. Докажите, что треугольники АВС и А1В1С1 гомотетичны.
30. Прямая а лежит в плоскости α, а прямая b перпендикулярна этой плоскости. Чему равен угол между прямыми а и b?
31. Даны три точки, не лежащие на одной прямой. Чему равен угол между прямыми СА и СВ, Если эти прямые образуют углы а и в с прямой АВ и α + β < 90°?
32. Прямые а, b, с параллельны одной и той же плоскости. Чему равен угол между прямыми b и с, если углы этих прямых с прямой а равны 60° и 80°?
33. Докажите, что любая прямая на плоскости, перпендикулярная проекции наклонной на эту плоскость, перпендикулярна и наклонной. И обратно: если прямая на плоскости перпендикулярна наклонной, то она перпендикулярна и проекции наклонной.
34. 1) Докажите, что прямая, пересекающая параллельные плоскости, пересекает их под равными углами. 2) Докажите, что плоскость, пересекающая параллельные прямые, пересекает их под равными углами.
35. Точка А отстоит от плоскости на расстояние h. Найдите длины наклонных, проведенных из этой точки под следующими углами к плоскости: 1) 30°; 2) 45°; 3) 60°.
37. Отрезок длиной 10 м пересекает плоскость, концы его находятся на расстояниях 2 м и 3 м от плоскости. Найдите угол между данным отрезком и плоскостью.
38. Из точки, отстоящей от плоскости на расстояние а, проведены две наклонные, образующие с плоскостью углы 45° и 30°, а между собой прямой угол. Найдите расстояние между концами наклонных.
39. Из точки, отстоящей от плоскости на расстояние а, проведены две наклонные, образующие с плоскостью углы 45°, а между собой угол 60°. Найдите расстояние между концами наклонных.
40. Из точки, отстоящей от плоскости на расстояние а, проведены две наклонные под углом 30° к плоскости, причем их проекции образуют угол 120°. Найдите расстояние между концами наклонных.
41. Через катет равнобедренного прямоугольного треугольника проведена плоскость под углом 45° ко второму катету. Найдите угол между гипотенузой и плоскостью.
42. Докажите, что плоскость, пересекающая параллельные плоскости, пересекает их под равными углами.
43. Две плоскости пересекаются под углом 30°. Точка А, лежащая в одной из этих плоскостей, отстоит от второй плоскости на расстояние а. Найдите расстояние от этой точки до прямой пересечения плоскостей.
44. Найдите угол между плоскостями, если точка, взятая на одной из них, отстоит от прямой пересечения плоскостей вдвое дальше, чем от второй плоскости.
45. Два равнобедренных треугольника имеют общее основание, а их плоскости образуют угол 60°. Общее основание равно 16 м, боковая сторона одного треугольника 17 м, а боковые стороны другого перпендикулярны. Найдите расстояние между вершинами треугольников.
46. Равнобедренные треугольники АВС и ABD с общим основанием АВ лежат в различных плоскостях, угол между которыми равен а. Найдите cosα, если: 1) АВ = 24 см, АС = 13 см, AD = 37 см, CD = 35 см; 2) АВ = 32 см, АС = 65 см, AD = 20 см, CD = 63 см
47. Катеты прямоугольного треугольника равны 7 м и 24 м. Найдите расстояние от вершины прямого угла до плоскости, которая проходит через гипотенузу и составляет угол 30° с плоскостью треугольника.
48. Дан равносторонний треугольник со стороной а. Найдите площадь его ортогональной проекции на плоскость, которая образует с плоскостью треугольника угол, равный: 1) 30°; 2) 45°; 3) 60°.
49. 1) Найдите площадь треугольника ортогональной проекции треугольника АВС из задачи 46 на плоскость треугольника ABD. 2) Найдите площадь треугольника ортогональной проекции треугольника АВD из задачи 46 на плоскость треугольника АВС.
50. Даны четыре точки А(2;7;-3), В(1;0;3), С(-3;-4;5), D(-2;3;-1). Найдите среди векторов AB^, BC^ , DC^, AD^, AC^ и BD^ равные векторы.
51. Даны три точки А(1;0;1), В(-1;1;2), С(0;2;-1). Найдите точку D(x;y;z), если векторы AB и CD равны.
52. Найдите D(x;y;z), если сумма векторов AB и CD равна нулю. А(1;0;1), В(-1;1;2), С(0;2;-1).
53. Даны векторы (2, n,3)^ и (3,2, m)^. При каких m и n эти векторы коллинеарны?
54. Дан вектор a (1;2;3), найдите коллинеарный ему вектор с началом в точке А(1;1;1) и В на плоскости ху.
55. При каком значении n данные векторы перпендикулярны:
56. Даны три точки А(1;0;1), В(-1;1;2), С(0;2;-1). Найдите на оси z такую точку D(0;0;с), чтобы векторы AB и CD были перпендикулярны.
57. Векторы a^ и b^ образуют угол 60°, а вектор с^ им перпендикулярен. Найдите абсолютную величину вектора a^ + b^ + с^ .
59. Даны четыре точки А(0;1;-1), В(1;-1;2), С(3;1;0), D(2;-3;1). Найдите косинус угла φ между векторами АВ и CD.
60. Даны три точки А(0;1;-1), В(1;-1;2), С(3;1;0). Найдите косинус угла С треугольника АВС.
61. Докажите, что угол φ между прямыми, содержащими векторы а^ и b^ , определяется из уравнения: |a^b^| = | а^ |•| b^ |•cosφ.
62. Из вершины прямого угла А треугольника АВС восставлен перпендикуляр AD к плоскости треугольника. Найдите косинус угла φ между векторами ВС и BD, если угол ABD равен α, а угол АВС равен β.
63. Наклонная образует угол 45° с плоскостью. Через основание наклонной проведена прямая в плоскости под углом 45° к проекции наклонной. Найдите угол φ между этой прямой и наклонной.
64. Из точки вне плоскости проведены перпендикуляр и две равные наклонные, образующие углы α с перпендикуляром. найдите угол φ между проекциями наклонных, если угол между наклонными β.
§15. Аксиомы стереометрии и их простейшие следствия

1. Точки A, B, C, D не лежат в одной плоскости. Докажите, что прямые AB и CD не пересекаются.1
2. Можно ли через точку пересечения двух данных прямых провести третью прямую, не лежащую с ними в одной плоскости? Ответ объясните.
3. Точки А, В, С лежат в каждой из двух различных плоскостей. Докажите, что эти точки лежат на одной прямой.
4. Даны три различные попарно пересекающиеся плоскости. Докажите, что если две из прямых пересечения этих плоскостей пересекаются, то третья прямая проходит через точку их пересечения.
5. Даны две плоскости, пересекающиеся по прямой а, и прямая b, которая лежит в одной из этих плоскостей и пересекает другую. Докажите, что прямые а и b пересекаются.
6. Четыре точки не лежат в одной плоскости. Могут ли какие-нибудь три из них лежать на одной прямой? Объясните ответ.
7. Докажите, что через прямую можно провести две различные плоскости.
8. Даны две непересекающиеся плоскости. Докажите, что прямая, пересекающая одну из этих плоскостей, пересекает и другую.
9. Даны две различные прямые, пересекающиеся в точке А. Докажите, что все прямые, пересекающие обе данные прямые и не проходящие через точку А, лежат в одной плоскости.
10. Докажите, что все прямые, пересекающие данную прямую и проходящие через данную точку вне прямой, лежат в одной плоскости.
11. Докажите, что если прямые АВ и CD не лежат в одной плоскости, то прямые АС и BD также не лежат в одной плоскости.
12. Даны четыре точки, не лежащие в одной плоскости. Сколько можно провести различных плоскостей, проходящий через три из этих точек? Объясните ответ.
13. Можно ли провести плоскость через три точки, если они лежат на одной прямой? Объясните ответ.
14. Даны четыре точки. Известно, что прямая, проходящая через любые две из этих точек, не пересекается с прямой, проходящей через другие две точки. Докажите, что данные четыре точки не лежат в одной плоскости.


Категория: Геометрия | Добавил: Админ | Теги: Погорелов
Просмотров: | Загрузок: 0 | Рейтинг: 0.0/0
Смотрите также:

ГДЗ по геометрии 11 класс Погорелов скачать бесплатно

Всего комментариев: 0
avatar