Главная » Файлы » 11 класс » Геометрия

по геометрии 11 класс Атанасян, Бутузов, Кадомцев 2009

Если у вас возникли трудности при выполнении домашнего задания по предмету Геометрия, то по геометрии 11 класс Атанасян, Бутузов, Кадомцев 2009 поможет вам. С помощью данного решебника вы сможете решить задания 11 класс. Книга по геометрии 11 класс Атанасян, Бутузов, Кадомцев 2009 позволит вам найти правильное решение онлайн и исправить ошибки.

Уважаемые посетители сайта, если вы не согласны с той информацией которая представлена на данной странице или считаете ее не правильной, не стоит попросту тратить свое время на написание негативных высказываний, вы можете помочь друг другу, для этого присылайте в комментарии свое "правильное" решение и мы его скорее всего опубликуем.

14.09.2015, 18:02
 
 

Глава VI. Цилиндр, конус и шар § 3. Сфера

577. Напишите уравнение сферы с центром А, проходящей через точку N, если: а) А ( — 2; 2; 0), N (5; 0; — 1); б) А ( — 2; 2; 0), N(0; 0; 0); в) A (0; 0; 0), N (5; 3; 1).
573. Точки А и В лежат на сфере с центром O∉АВ, а точка М лежит на отрезке АВ. Докажите, что: а) если М — середина отрезка АВ, то ОМ⊥АВ; б) если ОМ⊥АВ, то М — середина отрезка АВ.
574. Точка М — середина отрезка АВ, концы которого лежат на сфере радиуса R с центром О. Найдите: а) ОМ, если R = 50 см, AB=40 см; б) ОМ, если R = 15 мм, АВ= 18 мм; в) АВ, если R=10 дм, ОМ =60 см; г) AM, если R=a, ОМ = b.
575. Точки А и В лежат на сфере радиуса R. Найдите расстояние от центра сфера до прямой АВ, если АВ = m.
576. Найдите уравнение сферы радиуса R с центром А, если: а) А (2; -4; 7), R = 3; б) А (0; 0; 0), R = √2; в) А (2; 0; 0), R = 4.
578. Найдите координаты центра и радиус сферы, заданной уравнением: а) х2+y2+z2 = 49; б) (x — 3)2 + (y + 2)2 + z2 = 2.
579. Докажите, что каждое из следующих уравнений является уравнением сферы. Найдите координаты центра и радиус этой сферы: а) х2 —4x + y2 + z2 =0; б) x2+y2+z2—2y= 24; в) х2+ 2х + у2+z2 = 3; г) х2 — х — y2 + 3y + z2 —2z = 2,5.
580. Шар радиуса 41 дм пересечен плоскостью, находящейся на расстоянии 9 дм от центра. Найдите площадь сечения.
581. Вершины треугольника ABC лежат на сфере радиуса 13 см. Найдите расстояние от центра сферы до плоскости треугольника, если АВ = 6 см, ВС = 8 см, АС= 10 см.
582. Вершины прямоугольника лежат на сфере радиуса 10 см. Найдите расстояние от центра сферы до плоскости прямоугольника, если его диагональ равна 16 см.
583. Стороны треугольника касаются сферы радиуса 5 см. Найдите расстояние от центра сферы до плоскости треугольника, если его стороны равны 10 см, 10 см и 12 см.
584. Все стороны треугольника ABC касаются сферы радиуса 5 см. Найдите расстояние от центра сферы до плоскости треугольника, если AB= 13 см, BC= 14 см, CA = 15 см.
585. Все стороны ромба, диагонали которого равны 15 см и 20 см, касаются сферы радиуса 10 см. Найдите расстояние от центра сферы до плоскости ромба.
586. Отрезок ОН—высота тетраэдра ОАВС. Выясните взаимное расположение сферы радиуса R с центром О и плоскости ABC, если: a) R = 6 дм, ОН = 60 см; б) R = 3 м, ОН = 95 см; в) R = 5 дм, О А = 45 см; г) R = 3,5 дм, ОН = 40 см.
587. Расстояние от центра шара радиуса R до секущей плоскости равно d. Вычислите: а) площадь S сечения, если R — 12 см, d = 8 см; б) R, если площадь сечения равна 12 см2, d = 2 см.
588. Через точку, делящую радиус сферы пополам, проведена секущая плоскость, перпендикулярная к этому радиусу. Радиус сферы равен R. Найдите: а) радиус получившегося сечения; б) площадь боковой поверхности конуса, вершиной которого является центр сферы, а
589. Секущая плоскость проходит через конец диаметра сферы радиуса R так, что угол между диаметром и плоскостью равен а. Найдите длину окружности, получившейся в сечении, если: a) R = 2 см, α = 30°; б) R = 5 м, α = 45°.
590. Через точку сферы радиуса R, которая является границей данного шара, проведены две плоскости, одна из которых является касательной к сфере, а другая наклонена под углом φ к касательной плоскости. Найдите площадь сечения данного шара.
591. Сфера касается граней двугранного угла в 120°. Найдите радиус сферы и расстояние между точками касания, если расстояние от центра сферы до ребра двугранного угла равно а.
592. Радиус сферы равен 112 см. Точка, лежащая на плоскости, касательной к сфере, удалена от точки касания на 15 см. Найдите расстояние от этой точки до ближайшей к ней точки сферы.
593. Найдите площадь сферы, радиус которой равен: а) 6 см; б) 2 дм; в) √2 м; г) 2√3 см.
594. Площадь сечения сферы, проходящего через ее центр, равна 9 м2. Найдите площадь сферы.
595. Площадь сферы равна 324 см2. Найдите радиус сферы.
596. Используя формулу площади сферы, докажите, что площади двух сфер пропорциональны квадратам их радиусов.
597. Вычислите радиус круга, площадь которого равна площади сферы радиуса 5 м.
598. Радиусы двух параллельных сечений сферы равны 9 см и 12 см. Расстояние между секущими плоскостями равно 3 см. Найдите площадь сферы.
599. Радиусы сечений сферы двумя взаимно перпендикулярными плоскостями равны r1 и r2. Найдите площадь сферы, если сечения имеют единственную общую точку.
600. Используя формулу площади сферы, докажите, что площадь полной поверхности цилиндра, полученного при вращении квадрата вокруг одной из его сторон, равна площади сферы, радиус которой равен стороне квадрата.
Глава VII. Объемы тел. § 2. Объём прямой призмы и цилиндра

671. В цилиндр вписана правильная n-угольная призма. Найдите отношение объемов призмы и цилиндра, если: а) n = 3; б) n = 4; в) n=6; г) n = 8; д) n произвольное целое число.
659. Найдите объем прямой призмы АВСA1B1C1, если: а) ∠ВАС= 120°, AB = 5 см, AC = 3 см и наибольшая из площадей боковых граней равна 35 см2; б) ∠AB1C = 60°, АВ1 = 3, СВ1=2 и двугранный угол с ребром ВВ1 прямой.
660. Найдите объем прямой призмы АВСA1B1C1, если АВ = ВС = m, ∠ABC = φ и BB1=BD, где BD - высота треугольника ABC.
661. Найдите объем прямой призмы ABCA1B1C1, если АВ = ВС, ∠ABC = α, диагональ А1С равна l и составляет с плоскостью основания угол β.
662. Основанием прямой призмы является параллелограмм. Через сторону основания, равную и, и противолежащую ей сторону другого основания проведено сечение, составляющее угол β с плоскостью основания. Площадь сечения равна Q. Найдите объем призмы.
663. Найдите объем правильной n-угольной призмы, у которой каждое ребро равно а, если: а) n = 3; б) n = 4; в) n = 6; г) n = 8.
664. В правильной треугольной призме через сторону нижнего основания и противолежащую ей вершину верхнего основания проведено сечение, составляющее угол в 60° с плоскостью основания. Найдите объем призмы, если сторона основания равна а.
665. Наибольшая диагональ правильной шестиугольной призмы равна 8 см и составляет с боковым ребром угол в 30°. Найдите объем призмы.
666. Пусть V, г и h соответственно объем, радиус и высота цилиндра. Найдите: а) V, если r = 2√2 см, h = 3 см; б) r, если V =120 см3, h = 3,6 см; в) h, если r = h, V = 8π см3.
667. Алюминиевый провод диаметром 4 мм имеет массу 6,8 кг. Найдите длину провода (плотность алюминия 2,6 г/см3).
668. Какое количество нефти (в тоннах) вмещает цилиндрическая цистерна диаметра 18 м и высотой 7 м, если плотность нефти равна 0,85 г/см3?
669. П лощадь основания цилиндра равна Q, а площадь его осевого сечения равна S. Найдите объем цилиндра.
670. Свинцовая труба (плотность свинца 11,4 г/см3) с толщиной стенок 4 мм имеет внутренний диаметр 13 мм. Какова масса трубы, если ее длина равна 25 м?
672. В цилиндр вписана призма, основанием которой является прямоугольный треугольник с катетом а и прилежащим к нему углом α. Найдите объем цилиндра, если высота призмы равна h.
Введение

1. По рисунку 8 назовите: а) плоскости, в которых лежат прямые РЕ, МК, DB, АВ, ЕС; б) точки пересечения прямой DK с плоскостью ABC, прямой СЕ с плоскостью ADB; в) точки, лежащие в плоскостях ADB и DBC; г) прямые, по которым пересекаются плоскости ABC и DC
2. По рисунку 9 назовите: а) точки, лежащие в плоскостях DCC1 и BQC; б) плоскости, в которых лежит прямая АА1; в) точки пересечения прямой МК с плоскостью ABD, прямых DK и ВР с плоскостью А1В1С1; г) прямые, по которым пересекаются плоскости АА1В1 и ACD, Р
3. Верно ли, что: а) любые три точки лежат в одной плоскости; б) любые четыре точки лежат в одной плоскости; в) любые четыре точки не лежат в одной плоскости; г) через любые три точки проходит плоскость, и притом только одна?
4. Точки А, В, С и D не лежат в одной плоскости, а) Могут ли какие-то три из них лежать на одной прямой? б) Могут ли прямые АВ и CD пересекаться? Ответ обоснуйте.
5. Докажите, что через три данные точки, лежащие на прямой, проходит плоскость. Сколько существует таких плоскостей?
6. Три данные точки соединены попарно отрезками. Докажите, что все отрезки лежат в одной плоскости.
7. Две прямые пересекаются в точке М. Докажите, что все прямые, не проходящие через точку М и пересекающие данные прямые, лежат в одной плоскости. Лежат ли в одной плоскости все прямые, проходящие через точку М?
8. Верно ли утверждение: а) если две точки окружности лежат в плоскости, то и вся окружность лежит в этой плоскости; б) если три точки окружности лежат в плоскости, то и вся окружность лежит в этой плоскости?
9. Две смежные вершины и точка пересечения диагоналей параллелограмма лежат в плоскости α. Лежат ли две другие вершины параллелограмма в плоскости α? Ответ обоснуйте.
10. Верно ли, что прямая лежит в плоскости данного треугольника, если она: а) пересекает две стороны треугольника; б) проходит через одну из вершин треугольника?
11. Даны прямая и точка, не лежащая на этой прямой. Докажите, что все прямые, проходящие через данную точку и пересекающие данную прямую, лежат в одной плоскости.
12. Точки А, В, С, D не лежат в одной плоскости. Пересекаются ли плоскости, проходящие через точки А, В, С и А, В, D?
13. Могут ли две плоскости иметь: а) только одну общую точку; б) только две общие точки; в) только одну общую прямую?
14. Три прямые проходят через одну точку. Через каждые две из них проведена плоскость. Сколько всего проведено плоскостей?
15. Три прямые попарно пересекаются. Докажите, что они либо лежат в одной плоскости, либо имеют общую точку.
Вопросы к главе I Параллельность прямых и плоскостей.

1. Верно ли утверждение: если две прямые не имеют общих точек, то они параллельны?
2. Точка М не лежит на прямой а. Сколько прямых, не пересекающих прямую а, проходит через точку М? Сколько из этих прямых параллельны прямой а?
3. Прямые а и с параллельны, а прямые а и b пересекаются. Могут ли прямые b и с быть параллельными?
4. Прямая а параллельна плоскости α. Верно ли, что эта прямая: а) не пересекает ни одну прямую, лежащую в плоскости α; б) параллельна любой прямой, лежащей в плоскости α; в) параллельна некоторой прямой, лежащей в плоскости α?
5. Прямая а параллельна плоскости α. Сколько прямых, лежащих в плоскости α, параллельны прямой а? Параллельны ли друг другу эти прямые, лежащие в плоскости α?
6. Прямая а пересекает плоскость α. Лежит ли в плоскости а хоть одна прямая, параллельная α?
7. Одна из двух параллельных прямых параллельна некоторой плоскости. Верно ли утверждение, что и вторая прямая параллельна этой плоскости?
8. Верно ли утверждение: если две прямые параллельны не которой плоскости, то они параллельны друг другу?
9. Две прямые параллельны некоторой плоскости. Могут ли эти прямые: а) пересекаться? б) быть скрещивающимися?
10. Могут ли скрещивающиеся прямые a и b быть параллельными прямой с?
11. Боковые стороны трапеции параллельны плоскости α. Параллельны ли плоскость α и плоскость трапеции?
12. Две стороны параллелограмма параллельны плоскости α. Параллельны ли плоскость α и плоскость параллелограмма?
13. Могут ли быть равны два непараллельных отрезка, заключенные между параллельными плоскостями?
14. Существует ли тетраэдр, у которого пять углов граней прямые?
15. Существует ли параллелепипед, у которого: а) только одна грань — прямоугольник; б) только две смежные грани — ромбы; в) все углы граней острые; г) все углы граней прямые; д) число всех острых углов граней не равно числу всех тупых углов граней?
16. Какие многоугольники могут получиться в сечении: а) тетраэдра; б) параллелепипеда?
Вопросы к главе II Перпендикулярность прямых и плоскостей.

1. Верно ли утверждение: если две прямые в пространстве перпендикулярны к третьей прямой, то эти прямые параллельны? Верно ли это утверждение при условии, что все три прямые лежат в одной плоскости?
2. Параллельные прямые b и c лежат в плоскости α, а прямая а перпендикулярна к прямой b. Верно ли утверждение: а) прямая а перпендикулярна к прямой с; б) прямая а пересекает плоскость α?
3. Прямая а перпендикулярна к плоскости α, а прямая b не перпендикулярна к этой плоскости. Могут ли прямые а и b быть параллельными?
4. Прямая а параллельна плоскости α, а прямая b перпендикулярна к этой плоскости. Верно ли утверждение, что прямые а и b взаимно перпендикулярны?
5. Прямая а параллельна плоскости α, а прямая b перпендикулярна к этой плоскости. Существует ли прямая, перпендикулярная к прямым a и b?
6. Верно ли утверждение, что все прямые, перпендикулярные к данной плоскости и пересекающие данную прямую, лежат в одной плоскости?
7. Могут ли две плоскости, каждая из которых перпендикулярна к третьей плоскости, быть: а) параллельными плоскостями; б) перпендикулярными плоскостями?
8. Можно ли через точку пространства провести три плоскости, каждые две из которых взаимно перпендикулярны?
9. Диагональ квадрата перпендикулярна к некоторой плоскости. Как расположена другая диагональ квадрата по отношению к этой плоскости?
10. Сколько двугранных углов имеет: а) тетраэдр; б) параллелепипед?
Вопросы к главе V Метод координат в пространстве

1. Как расположена точка относительно прямоугольной системы координат, если: а) одна ее координата равна нулю; б) две ее координаты равны нулю?
2. Объясните, почему все точки, лежащие на прямой, параллельной плоскости Оху, имеют одну и ту же аппликату.
3. Даны точки А (2; 4; 5), В (3; х; у), С (0; 4; z) и D (5; t; u). При каких значениях х, у, z, t и u эти точки лежат: а) в плоскости, параллельной плоскости Оху; б) в плоскости, параллельной плоскости Oxz; в) на прямой, параллельной оси Ох?
4. Какие координаты имеет вектор СА, если АВ {x1; у1; z1}, ВС {х2; у2; z2}?
5. Первая и вторая координаты ненулевого вектора а равны нулю. Как расположен вектор а по отношению к оси: a) Oz; б) Ох; в) Oy?
6. Первая координата ненулевого вектора а равна нулю. Как расположен вектор а по отношению: а) к координатной плоскости Oxz; б) к оси Ох?
7. Коллинеарны ли векторы: а) а{—5; 3; —1} и b{6; —10; —2}; б) а{-2; 3; 7} и 6{-1; 1,5; 3,5)?
8. Длина радиус-вектора точки М равна 1. Может ли абсцисса точки М равняться: а) 1; б) 2?
9. Длина вектора а равна 3. Может ли одна из координат вектора а равняться: а) 3; б) 5?
10. Абсцисса точки М1 равна 3, а абсцисса точки М2 равна 6. а) Может ли длина отрезка М1М2 быть равной 2? б) Как расположен отрезок М1М2 по отношению к оси Ох, если его длина равна 3?
11. Векторы a и b имеют длины a и b . Чему равно скалярное произведение векторов a и b , если: а) векторы a и b сонаправлены; б) векторы a и b противоположно направлены; в) векторы a и b перпендикулярны; г) угол между векторами a и b равен 60°; д) угол ме
12. При каком условии скалярное произведение векторов a и b: а) положительно; б) отрицательно; в) равно нулю?
13. Дан куб ABCDA1B1C1D1. Перпендикулярны ли векторы: a) AD и D1C1; б) BD и СС1; в) А1С1 и AD; г) DB и D1C1; д) ВВ и АС?
14. Первые координаты векторов а и b равны соответственно 1 и 2. Может ли скалярное произведение векторов а и b быть: а) меньше 2; б) равно 2; больше 2?
15. Какие координаты имеет точка А, если при центральной, симметрии с центром А точка В(1; 0; 2) переходит в точку С (2; -1; 4)?
16. Как расположена плоскость по отношению к осям координат Ох и Oz, если при зеркальной симметрии относительно этой плоскости точка М(2; 1; 3) переходит в точку M1 (2; —2; 3)?
17. В какую перчатку (правую или левую) переходит правая перчатка при зеркальной симметрии? осевой симметрии? центральной симметрии?
Вопросы к главе VI Цилиндр, конус и шар

Вопросы к главе VI Цилиндр, конус и шар
Вопросы к главе VII

1. Каким соотношением связаны объемы V1 и V2 тел Р1 и Р2, если: а) тело Р1 содержится в теле P2; б) каждое из тел Р1 и Р2 составлено из n кубов с ребром 1 см?
2. Какую часть объема данной прямой треугольной призмы составляет объем треугольной призмы, отсеченной от данной плоскостью, проходящей через средние линии оснований?
3. Изменится ли объем цилиндра, если диаметр его основания увеличить в 2 раза, а высоту уменьшить в 4 раза?
4. Как изменится объем правильной пирамиды, если ее высоту увеличить в n раз, а сторону основания уменьшить в n раз?
5. Основаниями двух пирамид с равными высотами являются четырехугольники с соответственно равными сторонами. Равны ли объемы этих пирамид?
6. Как относятся объемы двух конусов, если их высоты равны, а отношение радиусов оснований равно 2?
7. Из каких тел состоит тело, полученное вращением равнобедренной трапеции вокруг большего основания?
8. Один конус получен вращением неравнобедренного прямоугольного треугольника вокруг одного из катетов, а другой конус — вращением вокруг другого катета. Равны ли объемы этих конусов?
9. Диаметр одного шара равен радиусу другого. Чему равно отношение: а) радиусов этих шаров; б) объемов шаров?
10. Сколько нужно взять шаров радиуса 2 см, чтобы сумма их объемов равнялась объему шара радиуса 6 см?
11. Во сколько раз объем шара, описанного около куба, больше объема шара, вписанного в этот же куб?
12. Как изменится площадь сферы, если ее радиус: а) уменьшить в 2 раза; б) увеличить в 3 раза?
13. Отношение объемов двух шаров равно 8. Как относятся площади их поверхностей?
14. В каком отношении находятся объемы двух шаров, если площади их поверхностей относятся как m2:n2?
Глава I Параллельность прямых и плоскостей. §3 Параллельность плоскостей

48. Укажите модели параллельных плоскостей на предметах классной обстановки.
49. Прямая m пересекает плоскость α в точке В. Существует ли плоскость, проходящая через прямую m и параллельная плоскости α?
50. Плоскости α и β параллельны, прямая m лежит в плоскости α. Докажите, что прямая m параллельна плоскости β.
51. Докажите, что плоскости α и β параллельны, если две пересекающиеся прямые m и n плоскости α параллельны плоскости β.
52. Две стороны треугольника параллельны плоскости α. Докажите, что и третья сторона параллельна плоскости α.
53. Три отрезка А1А2 В1В2 и С1С2, не лежащие в одной плоскости, имеют общую середину. Докажите, что плоскости А1В1С1 и А2В2С2 параллельны.
54. Точка В не лежит в плоскости треугольника ADC, точки М, N и Р — середины отрезков ВА, ВС и BD соответственно. а) Докажите, что плоскости MNP и ADC параллельны. б) Найдите площадь треугольника MNP, если площадь треугольника ADC равна 48 см2.
55. Докажите, что если прямая а пересекает плоскость α, то она пересекает также любую плоскость, параллельную плоскости α.
56. Плоскости α и β параллельны, А — точка плоскости α. Докажите, что любая прямая, проходящая через точку А и параллельная плоскости β, лежит в плоскости α.
57. Прямая а параллельна одной из двух параллельных плоскостей. Докажите, что прямая а либо параллельна другой плоскости, либо лежит в ней.
58. Докажите, что если плоскость γ пересекает одну из параллельных плоскостей α и β, то она пересекает и другую плоскость.
59. Докажите, что через точку А, не лежащую в плоскости α, проходит плоскость, параллельная плоскости α, и притом только одна.
60. Две плоскости &alpha и β параллельны плоскости γ. Докажите, что плоскости &alpha и β параллельны.
61. Даны пересекающиеся прямые а и b и точка А, не лежащая в плоскости этих прямых. Докажите, что через точку А проходит плоскость, параллельная прямым a и b, и притом только одна.
62. Для проверки горизонтальности установки диска угломерных инструментов пользуются двумя уровнями, расположенными в плоскости диска на пересекающихся прямых. Почему уровни нельзя располагать на параллельных прямых?
63. Параллельные плоскости &alpha и β пересекают сторону АВ угла ВАС соответственно в точках A1 и A2, а сторону АС этого угла — соответственно в точках В1 и В2. Найдите: а) АА2 и АВ2, если A1A2 = 2A1A, A1A2=12 см, АВ1 =5 см; б) А2В2 и AA2, если A1B1
64. Три прямые, проходящие через одну точку и не лежащие в одной плоскости, пересекают одну из параллельных плоскостей в точках A1, B1 и C1 а другую — в точках A2, B2 и C2. Докажите, что треугольники A1B1C1 и А2В2С2 подобны.
65. Параллельные отрезки А1А2, В1В2 и С1С2 заключены между параллельными плоскостями α и β (рис. 32). а) Определите вид четырехугольников A1B1B2A2, B1C1C2B2 и A1C1C2A2. б) Докажите, что ΔA1B1C1 = ΔА2В2С2.
Глава I Параллельность прямых и плоскостей. §4 Тетраэдр и параллелепипед.

66. Назовите все пары скрещивающихся (т.е: принадлежащих скрещивающимся прямым) ребер тетраэдра ABCD. Сколько таких пар ребер имеет тетраэдр?
67. В тетраэдре DABC дано: ∠ADB = 54°, ∠BDC = 72°, ∠CDA =90°, DA=20 см, BD = 18 см, DC = 21 см. Найдите: а) ребра основания ABC данного тетраэдра; б) площади всех боковых граней.
68. Точки М и N — середины ребер АВ и АС тетраэдра ABCD. Докажите, что прямая MN параллельна плоскости BCD.
69. Через середины ребер АВ и ВС тетраэдра SABC проведена плоскость параллельно ребру SB. Докажите, что эта плоскость пересекает грани SAB и SBC по параллельным прямым.
70. Докажите, что плоскость, проходящая через середины ребер АВ, АС и AD тетраэдра ABCD, параллельна плоскости BCD.
71. Изобразите тетраэдр DABC и на ребрах DB, DC и ВС отметьте соответственно точки М, N и К. Постройте точку пересечения: а) прямой MN и плоскости АВС; б) прямой KN и плоскости ABD.
72. Изобразите тетраэдр DABC и постройте сечение этого тетраэдра плоскостью, проходящей через точку М параллельно плоскости грани ABC, если: а) точка М является серединой ребра AD; б) точка М лежит внутри грани ABD.
73. В тетраэдре ABCD точки М, N и Р являются серединами ребер АВ, ВС и CD, АС=10 см, BD= 12 см. Докажите, что плоскость MNP проходит через середину К ребра AD, и найдите периметр четырехугольника, полученного при пересечении тетраэдра плоскостью MNP.
74. Через точку пересечения медиан грани BCD тетраэдра ABCD проведена плоскость, параллельная грани ABC. а) Докажите, что сечение тетраэдра этой плоскостью есть треугольник, подобный треугольнику ABC. б) Найдите отношение площадей сечения и треугольника A
75. Изобразите тетраэдр KLMN. а) Постройте сечение этого тетраэдра плоскостью, проходящей через ребро KL и середину А ребра MN. б) Докажите, что плоскость, проходящая через середины Е, О и F отрезков LM, МА и МК, параллельна плоскости LKA. Найдите площадь
76. Дан параллелепипед ABCDA1B1C1D1. Докажите, что AC||A1C1 и BD||B1D1.
77. Сумма всех ребер параллелепипеда ABCDA1B1C1D1. равна 120 см. Найдите каждое ребро параллелепипеда, если известно, что AB/BC=4/5, BC/BB1=5/6.
78. На рисунке 42 изображен параллелепипед ABCDA1B1C1D1, на ребрах которого отмечены точки М, N, М1 и N1 так, что AM = CN=A1M1 = C1N1. Докажите, что MBNDM1B1N1D1 — параллелепипед.
79. Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечение: а) плоскостью АВС1; б) плоскостью АСС1. Докажите, что построенные сечения являются параллелограммами.
80. Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечения плоскостями АВС1 и DCB1, а также отрезок, по которому эти сечения пересекаются.
81. Изобразите параллелепипед ABCDA1B1C1D1 и отметьте точки М и N соответственно на ребрах BB1 и CC1. Постройте точку пересечения: а) прямой MN с плоскостью ABC; б) прямой AM с плоскостью A1B1C1.
82. Изобразите параллелепипед ABCDA1B1C1D1 и отметьте внутреннюю точку М грани АА1В1В. Постройте сечение параллелепипеда, проходящее через точку М параллельно: а) плоскости основания ABCD; б) грани ВВ1С1С; в) плоскости BDD1.
83. Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечение плоскостью, проходящей через: а) ребро СС1 и точку пересечения диагоналей грани AA1D1D; б) точку пересечения диагоналей грани ABCD параллельно плоскости АВ1С1.
84. Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечение плоскостью, проходящей через точки В1, D1 и середину ребра CD. Докажите, что построенное сечение — трапеция.
85. Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечение плоскостью BKL, где К — середина ребра АА1, a L — середина ребра СС1. Докажите, что построенное сечение— параллелограмм.
86. Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечение плоскостью, проходящей через диагональ АС основания параллельно диагонали BD1. Докажите, что если основание параллелепипеда — ромб и углы АВВ1 и СВВ1 прямые, то построенное сечение — равно
87. Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечение плоскостью MNK, где точки М, N и К лежат соответственно на ребрах: а) ВВ1, АА1, AD1 б) СС1, AD, ВВ1.
Глава II Перпендикулярность прямых и плоскостей. §2 Перпендикуляр и наклонные. Угол между прямой и плоскостью.

138. Из некоторой точки проведены к данной плоскости перпендикуляр и наклонная, угол между которыми равен φ. а) Найдите наклонную и ее проекцию на данную плоскость, если перпендикуляр равен d. б) Найдите перпендикуляр и проекцию наклонной, если наклон
139. Из некоторой точки проведены к плоскости две наклонные. Докажите, что: а) если наклонные равны, то равны и их проекции; б) если проекции наклонных равны, то равны и наклонные; в) если наклонные не равны, то большая наклонная имеет большую проекцию.
140. Из точки А, не принадлежащей плоскости α, проведены к этой плоскости перпендикуляр АО и две наклонные АВ и АС. Известно, что ∠OAB= ∠BAС = 60°, АО = 1,5 см. Найдите расстояние между основаниями наклонных.
141. Один конец данного отрезка лежит в плоскости ос, а другой находится от нее на расстоянии 6 см. Найдите расстояние от середины данного отрезка до плоскости а.
142. Концы отрезка отстоят от плоскости α на расстояниях 1 см и 4 см. Найдите расстояние от середины отрезка до плоскости α.
143. Расстояние от точки М до каждой из вершин правильного треугольника ABC равно 4 см. Найдите расстояние от точки М до плоскости ABC, если АВ = 6 см.
144. Прямая а параллельна плоскости α. Докажите, что все точки прямой а равноудалены от плоскости α.
145. Через вершину А прямоугольного треугольника ABC с прямым углом С проведена прямая AD, перпендикулярная к плоскости треугольника, а) Докажите, что треугольник CBD прямоугольный, б) Найдите BD, если ВС = а, DC =b.
146. Прямая а пересекает плоскость α в точке М и не перпендикулярна к этой плоскости. Докажите, что в плоскости αчерез точку М проходит прямая, перпендикулярная к прямой а, и притом только одна.
147. Из точки М проведен перпендикуляр МВ к плоскости прямоугольника ABCD. Докажите, что треугольники AMD и MCD прямоугольные.
148. Прямая АК перпендикулярна к плоскости правильного треугольника ABC, М — середина стороны ВС. Докажите, что MK⊥BC.
149. Отрезок AD перпендикулярен к плоскости равнобедренного треугольника ABC. Известно, что АВ =АС = 5 см, ВС= 6 см, AD = 12 см. Найдите расстояния от концов отрезка AD до прямой ВС.
150. Через вершину А прямоугольника ABCD проведена прямая АК, перпендикулярная к плоскости прямоугольника. Известно, что KD = 6 см, КВ = 7 см, КС=9 см. Найдите: а) расстояние от точки К до плоскости прямоугольника ABCD; б) расстояние между прямыми АК и CD
151. Прямая CD перпендикулярна к плоскости треугольника ABC. Докажите, что: а) треугольник ABC является проекцией треугольника ABD на плоскость АВС; б) если CH — высота треугольника ABC, то DH — высота треугольника ABD.
152. Через вершину В квадрата ABCD проведена прямая BF, перпендикулярная к его плоскости. Найдите расстояния от точки F до прямых, содержащих стороны и диагонали квадрата, если BF = 8 дм, АВ = 4 дм.
153. Докажите, что прямая а, проведенная в плоскости а через основание М наклонной AM перпендикулярно к ней, перпендикулярна к ее проекции НМ (см. рис. 53).
154. Прямая BD перпендикулярна к плоскости треугольника ABC. Известно, что BD = 9 см, АС=10 см, ВС = ВА = 13 см. Найдите: а) расстояние от точки D до прямой AC; б) площадь треугольника ACD.
155. Через вершину прямого угла С равнобедренного прямоугольного треугольника ABC проведена прямая СМ, перпендикулярная к его плоскости. Найдите расстояние от точки М до прямой АВ, если АС = 4 см, а СМ = 2 √7 см.
156. Один из катетов прямоугольного треугольника ABC равен т, а острый угол, прилежащий к этому катету, равен φ. Через вершину прямого угла С проведена прямая CD, перпендикулярная к плоскости этого треугольника, CD = n. Найдите расстояние от точки D д
157. Прямая ОК перпендикулярна к плоскости ромба ABCD, диагонали которого пересекаются в точке О. а) Докажите, что расстояния от точки К до всех прямых, содержащих стороны ромба, равны, б) Найдите это расстояние, если ОК = 4,5 дм, АС = 6 дм, BD = 8 дм.
158. Через вершину В ромба ABCD проведена прямая ВМ, перпендикулярная к его плоскости. Найдите расстояния от точки М до прямых, содержащих стороны ромба, если AB = 25 см, ∠BAD = 60°, BM =12,5 см.
159. Прямая ВМ перпендикулярна к плоскости прямоугольника ABCD. Докажите, что прямая, по которой пересекаются плоскости ADM и ВСМ, перпендикулярна к плоскости АВМ.
160. Концы отрезка АВ лежат на двух параллельных плоскостях, расстояние между которыми равно d, причем d<AB. Докажите, что проекции отрезка АВ на эти плоскости равны. Найдите эти проекции, если АВ = 13 см, d=5 см.
161. Луч ВА не лежит в плоскости неразвернутого угла CBD. Докажите, что если ∠АВС= ∠ABD, причем ∠ABC < 90°, то проекцией луча ВА на плоскость CBD является биссектриса угла CBD.
162. Прямая MA проходит через точку А плоскости α и образует с этой плоскостью угол φ0≠90°. Докажите, что φ0 является наименьшим из всех углов, которые прямая МА образует с прямыми, проведенными в плоскости α через точку А.
163. Наклонная АМ, проведенная из точки А к данной плоскости, равна d. Чему равна проекция этой наклонной на плоскость, если угол между прямой АМ и данной плоскостью равен: а) 45°; б) 60°; в) 30°?
164. Под углом φ к плоскости α проведена наклонная. Найдите φ, если известно, что проекция наклонной вдвое меньше самой наклонной.
165. Из точки А, удаленной от плоскости γ на расстояние d, проведены к этой плоскости наклонные АВ и АС под углом 30° к плоскости. Их проекции на плоскость γ образуют угол в 120°. Найдите ВС.
Глава III Многогранники. § 2. Пирамида ВОПРОСЫ И ЗАДАЧИ

276. Сколько центров симметрии имеет: а) параллелепипед; б) правильная треугольная призма; в) двугранный угол; г) отрезок?
277. Сколько осей симметрии имеет: а) отрезок; б) правильный треугольник; в) куб?
278. Сколько плоскостей симметрии имеет: а) правильная четырехугольная призма, отличная от куба; б) правильная четырехугольная пирамида; в) правильная треугольная пирамида?
Глава III Многогранники. § 2. Пирамида ПРАКТИЧЕСКИЕ ЗАДАНИЯ

271. На рисунке 88 изображена развертка правильного тетраэдра. Перерисуйте ее на плотный лист бумаги в большем масштабе. вырежьте развертку и склейте из нее тетраэдр*.
272. На рисунке 89 изображена развертка куба. Перерисуйте ее на плотный лист бумаги в большем масштабе, вырежьте развертку и склейте из нее куб.
273. На рисунке 90 изображена развертка правильного октаэдра. Перерисуйте ее на плотный лист бумаги в большем масштабе, вырежьте развертку и склейте из нее октаэдр.
274. На рисунке 91 изображена развёртка правильного додекаэдра. Перерисуйте её на плотный лист бумаги в большем масштабе, вырежьте развертку и склейте из нее додекаэдр.
275. На рисунке 92 изображена развертка правильного икосаэдра. Перерисуйте ее на плотный лист бумаги в большем масштабе, вырежьте развертку и склейте из нее икосаэдр.
Глава III Многогранники. § 3. Правильные многогранники

Вопросы к главе III
279. Найдите угол между двумя диагоналями граней куба, имеющими общий конец.
280. Ребро куба равно а. Найдите площадь сечения, проходящего через диагонали двух его граней.
281. В кубе ABCDA1B1C1D1 из вершины D1 проведены диагонали граней D1A, D1C и D1B1 и концы их соединены отрезками, Докажите, что многогранник D1AB1C—правильный тетраэдр. Найдите отношение площадей поверхностей куба и тетраэдра.
282. Найдите угол между двумя ребрами правильного октаэдра, которые имеют общую вершину, но не принадлежат одной грани (см. рис. 82).
283. В правильном тетраэдре DABC ребро равно а. Найдите площадь сечения тетраэдра плоскостью, проходящей через центр грани ABC: а) параллельно грани BDC; б) перпендикулярно к ребру AD.
284*. От каждой вершины правильного тетраэдра с ребром 2 отсекают правильный тетраэдр с ребром 1. Какая фигура получится в результате?
285. Докажите, что в правильном тетраэдре отрезки, соединяющие центры граней, равны друг другу.
286. В правильном тетраэдре h — высота, m — ребро, а n — расстояние между центрами его граней. Выразите: а) m через h; б) n через m.
287. Ребро правильного октаэдра равно а. Найдите расстояние между: а) двумя его противоположными вершинами; б) центрами двух смежных граней; в) противоположными гранями.
Глава IV. Векторы в пространстве § 1. Понятие вектора в пространстве

320. В тетраэдре ABCD точки М, N и К— середины ребер АС. ВС и CD соответственно, АВ =3 см, ВС = 4 см, BD=5 см. Найдите длины векторов: а) АВ, ВС, BD, NM, BN, NK; б) СВ, BA, DB, NC, KN.
321. Измерения прямоугольного параллелепипеда ABCDA1B1C1D1 таковы: AD = 8 см. АВ = 9 см и АА1 — 12 см. Найдите длины векторов: а) СС1, СВ, CD; б) DC1, DB, DB1.
322. На рисунке 97 изображен параллелепипед ABCDA1B1C1D1. Точки М и К — середины ребер B1C1 и A1D1. Укажите на этом рисунке все пары: а) сонаправленных векторов; б) противоположно направленных векторов; в) равных векторов.
323. На рисунке 98 изображен тетраэдр ABCD, ребра которого равны. Точки М, N, Р и Q — середины сторон АВ, AD, DC, ВС. а) Выпишите все пары равных векторов, изображенных на этом рисунке, б) Определите вид четырехугольника MNPQ.
324. Справедливо ли утверждение: а) два вектора, коллинеарные ненулевому вектору, коллинеарны между собой; б) два вектора, сонаправленные с ненулевым вектором, сонаправлены; в) два вектора, коллинеарные ненулевому вектору, сонаправлены?
325. Известно, что АА1=ВВ1. Как расположены по отношению друг к другу: а) прямые АВ и А1В1; б) прямая АВ и плоскость, проходящая через точки A1 и В1; в) плоскости, одна из которых проходит через точки A и B, а другая проходит через точки А1 и В1?
326. На рисунке 97 изображен параллелепипед, точки М и К — середины ребер В1С1 и A1D1. Назовите вектор, который получится, если отложить: а) от точки С вектор, равный DD1; б) от точки D вектор, равный СМ; в) от точки А1 вектор, равный АС; г) от точки С1 в
Глава IV. Векторы в пространстве § 3. Компланарные вектора

Вопросы к главе IV
355. Дан параллелепипед ABCDA1B1C1D1. Какие из следующих трех векторов компланарны: а) АА1, СС1, ВВ1; б) АВ, AD, АA1; в) В1В, AC, DD1; г) AD, СС1, A1B1?
356. Отрезок EF соединяет середины ребер AC и BD тетраэдра ABCD. Докажите, что 2FE = ВА + DC. Компланарны ли векторы FE, ВА и DC?
357. Даны параллелограммы ABCD и AB1C1D1. Докажите, что векторы ВВ1, СС1 и DD1 компланарны.
358. Дан параллелепипед ABCDA1B1C1D1. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов: а) AB + AD + AA1; б) DA + DC + DD1; в) A1B1 + C1B1 + BB1; г) A1A + A1D1 + AB; д) B1A1 + BB1 + BC.
359. В вершинах А1, В и D куба ABCDA1B1C1D1, ребро которого равно а, помещены точечные заряды q. а) Выразите результирующую напряженность* создаваемого ими электрического поля в точках A и C1 через вектор AC1. б) Найдите абсолютную величину результирующей
360. Дан параллелепипед ABCDA1B1C1D1. а) Разложите вектор BD1 по векторам ВА, ВС и ВВ1. б) Разложите вектор B1D1 по векторам А1А, А1В и А1D1.
361. Диагонали параллелепипеда ABCDA1B1C1D1 пересекаются в точке О. Разложите векторы CD и D1O по векторам АА1, АВ и AD.
362. Точка К — середина ребра ВС тетраэдра ABCD. Разложите вектор DK по векторам a = DA, b = АВ и с = АС.
363. Основанием пирамиды с вершиной О является параллелограмм ABCD, диагонали которого пересекаются в точке M. Разложите векторы OD и ОМ по векторам a = OA, b = OB и c = OC.
364. Точка К—середина ребра В1С1 куба ABCDA1B1C1D1. Разложите вектор АК по векторам а = АВ, b = AD, с = АА, и найдите длину этого вектора, если ребро куба равно m.
365. Вне плоскости параллелограмма ABCD взята точка О. Точка M — середина АВ, а точка К — середина MD. Разложите векторы ОМ и ОК по векторам а = ОА, b = ОВ, с = ОС.
366. Докажите, что если М — точка пересечения медиан треугольника ABC, а О — произвольная точка пространства, то
367. В тетраэдре ABCD медиана АА1 грани ABC делится точкой К так, что АК:КА1 =3:7. Разложите вектор DK по векторам DA, DB, DC.
368. Точки М и N являются серединами ребер АВ и A1D1 параллелепипеда ABCDA1B1C1D1. Разложите, если это возможно, по векторам АВ и AD вектор: а) AC; б) СМ; в) C1N; г) AC1; д) A1N; е) AN; ж) MD.
369. Медианы грани ABC тетраэдра ОABC пересекаются в точке М. Разложите вектор ОА по векторам ОВ, ОС, ОМ.
370. Высоты AM и DN правильного тетраэдра ABCD пересекаются в точке К. Разложите по векторам a = DA, b=DB, c = DC вектор: a) DN; б) DK; в) AМ; г) МК.
371. В тетраэдре ABCD медианы грани BCD пересекаются в точке О. Докажите, что длина отрезка АО меньше одной трети суммы длин ребер с общей вершиной A.
372. Докажите, что диагональ АС1 параллелепипеда ABCDA1B1C1D1 проходит через точки пересечения медиан треугольников A1BD и CB1D1 и делится этими точками на три равных отрезка (рис. 111).
373. Точки А1, В1, С1 и М1 —основания перпендикуляров, про веденных к плоскости α из вершин треугольника ABC и из точки М пересечения медиан этого треугольника (рис. 112). Останется ли верным равенство, если какие-то стороны треугольника ABC пересек
374. Отрезки АВ и CD не лежат в одной плоскости, точки М и N — середины этих отрезков. Докажите, что
375. В тетраэдре ABCD точки К и М — середины ребер АВ и CD Докажите, что середины отрезков КС, KD, МА и MB являют ся вершинами некоторого параллелограмма.
Глава IV. Векторы в пространстве Дополнительные задачи

376. Лан параллелепипед MNРQМ1N1P1Q1. Докажите, что:
377. На рисунке 113 изображен правильный октаэдр. Докажите, что:
378. Докажите, что разность векторов а и b выражается формулой a - b = a + (-b)
379. Дан тетраэдр ABCD. Найдите сумму векторов: а) АВ + BD + DC; б) AD + CB + DC; в) AB+CD+BC+DA.
380. Дан параллелепипед ABCDA1B1C1D1. Найдите сумму векторов: а) АВ+В1С1 + DD1 + CD; б) B1C1+AB+ DD1+CB1 +BC +A1A; в) BA + AC+CB + DC + DA.
381. Даны треугольники ABC, А1В1С1 и две точки О и Р пространства. Известно, что OA+OP=OA1, OB+OP=OB1,OC+OP=OC1. Докажите, что стороны треугольника А1В1С1 соответственно равны и параллельны сторонам треугольника ABC.
382. При каких значениях k в равенстве a = kb, где b ≠0, векторы а и b: а) коллинеарны; б) сонаправлены; в) противоположно направлены; г) являются противоположными?
383. Числа k и l не равны друг другу. Докажите, что если векторы a+kb и a+lb не коллинеарны, то: а) векторы а и b не коллинеарны; б) векторы a+k1b и а+lb не коллинеарны при любых неравных числах k1 и l1.
384. Точки А1, В1 и С1 — середины сторон ВС, АС и АВ треугольника ABC, точка О — произвольная точка пространства. Докажите, что
385. Отрезки, соединяющие середины противоположных сторон четырехугольника ABCD, пересекаются в точке М. Точка О — произвольная точка пространства. Докажите, что
386. Диагонали параллелограмма ABCD пересекаются в точке О. Докажите, что для любой точки М пространства справедливо неравенство
387. Три точки М, N и Р лежат на одной прямой, а точка О не лежит на этой прямой. Выразите вектор ОР через векторы ОМ и ON, если: a) NP = 2MN; б) МР-½PN; в) МР = k⋅MN, где k—данное число.
388. Докажите, что векторы р, а и b компланарны, если: а) один из данных векторов нулевой; б) два из данных векторов коллинеарны.
389. На двух скрещивающихся прямых отмечены по три точки: A1, A2, A3 и B1, B2, B3, причем A1A2=k⋅A1A3, В1В2= k⋅В1В3. Докажите, что прямые А1В1, А2В2, A3B3 параллельны некоторой плоскости.
390. Дан прямоугольный параллелепипед ABCDA1B1C1D1, в котором AB = AD = a, AA1 = 2а. В вершинах B1 и D1 помещены заряды q, а в вершине A — заряд 2q. Найдите абсолютную величину результирующей напряженности электрического поля: а) в точке A1; б) в точке С;
391. В тетраэдре ABCD точка К — середина медианы ВВ1 грани BCD. Разложите вектор АК по векторам а = АВ, b = АС, с=AD.
392. На трех некомпланарных векторах р = АВ, q = AD, г=АА1 построен параллелепипед ABCDA1B1C1D1. Разложите по векторам р, q и г векторы, образованные диагоналями этого параллелепипеда.
393. В параллелепипеде ABCDA1B1C1D1 точка К—середина ребра СС1. Разложите вектор: а) АК по векторам АВ, AD, АА1; б) DA1 по векторам АВ1, ВС1, CD1.
394. В параллелепипеде ABCDA1B1C1D1 диагонали грани DCC1D1 пересекаются в точке М. Разложите вектор AM по векторам АВ, AD и АА1.
395. Докажите, что если точки пересечения медиан треугольников ABC и А1В1С1 совпадают, то прямые АА1, ВВ1 и СС1 параллельны некоторой плоскости.
396. В тетраэдре ABCD точка М — середина ребра ВС. Выразите через векторы b = АВ, с = АС и d = AD следующие векторы: ВС, CD, DB и DM.
397. В тетраэдре ABCD точки М и N являются соответственно точками пересечения медиан граней ADB и BDC. Докажите, что MN||AC, и найдите отношение длин этих отрезков.
398. Треугольники ABC, A1B1C1 и A2B2C2 расположены так, что точки А, В, С являются серединами отрезков А1А2, В1В2, С1С2 соответственно. Докажите, что точки пересечения медиан треугольников ABC, А1В1С1 и A2B2C2 лежат на одной прямой.
399. Докажите, что треугольник, вершинами которого являются точки пересечения медиан боковых граней тетраэдра, подобен основанию тетраэдра.
Глава VI. Цилиндр, конус и шар § 1. цилиндр

521. Докажите, что осевое сечение цилиндра является прямоугольником, две противоположные стороны которого — образующие, а две другие — диаметры оснований цилиндра. Найдите диагональ осевого сечения, если радиус цилиндра равен 1,5 м, а высота —4 м.
522. Диагональ осевого сечения цилиндра равна 48 см. Угол между этой диагональю и образующей цилиндра равен 60°. Найдите: а) высоту цилиндра; б) радиус цилиндра; в) площадь основания цилиндра.
523. Осевое сечение цилиндра — квадрат, диагональ которого равна 20 см. Найдите: а) высоту цилиндра; б) площадь основания цилиндра.
524. Осевые сечения двух цилиндров равны. Равны ли высоты этих цилиндров?
525. Площадь осевого сечения цилиндра равна 10 м2, а площадь основания — 5 м2. Найдите высоту цилиндра.
526. Площадь основания цилиндра относится к площади осевого сечения как √3π:4. Найдите: а) угол между диагональю осевого сечения цилиндра и плоскостью основания; б) угол между диагоналями осевого сечения.
527. Концы отрезка АВ лежат на окружностях оснований цилиндра. Радиус цилиндра равен г, его высота — h, а расстояние между прямой АВ и осью цилиндра равно d. Найдите: a) h, если r =10 дм, d = 8 дм, АВ = 13 дм; б) d, если h = 6 см, г = 5 см, АВ=10 см.
528. Докажите, что если секущая плоскость параллельна оси цилиндра и расстояние между этой плоскостью и осью цилиндра меньше его радиуса, то сечение цилиндра представляет собой прямоугольник, две противоположные стороны которого — образующие цилиндра.
529. Высота цилиндра равна 8 см, радиус равен 5 см. Найдите площадь сечения цилиндра плоскостью, параллельной его оси, если расстояние между этой плоскостью и осью цилиндра равно 3 см.
530. Высота цилиндра равна 12 см, а радиус основания равен 10 см. Цилиндр пересечен плоскостью, параллельной его оси, так, что в сечении получился квадрат. Найдите расстояние от оси цилиндра до секущей плоскости.
531. Высота цилиндра равна 10 дм. Площадь сечения цилиндра плоскостью, параллельной оси цилиндра и удаленной на 9 дм от нее, равна 240 дм2. Найдите радиус цилиндра.
532. Через образующую АА1 цилиндра проведены две секущие плоскости, одна из которых проходит через ось цилиндра. Найдите отношение площадей сечений цилиндра этими плоскостями, если угол между ними равен tp.
533. Высота цилиндра равна h, а площадь осевого сечения равна 5. Найдите площадь сечения цилиндра плоскостью, параллельной его оси, если расстояние между осью цилиндра и плоскостью сечения равно d.
534. Плоскость, параллельная оси цилиндра, отсекает от окружности основания дугу в 120°. Найдите площадь сечения, если высота цилиндра равна h, а расстояние между осью цилиндра и секущей плоскостью равно d.
535. Плоскость, параллельная оси цилиндра, отсекает от окружности основания дугу в 60°. Образующая цилиндра равна 10√З см, расстояние от оси до секущей плоскости равно 2 см. Найдите площадь сечения.
536. Через образующую цилиндра проведены две взаимно перпендикулярные плоскости. Площадь каждого из полученных сечений равна 5. Найдите площадь осевого сечения цилиндра.
537. Диаметр основания цилиндра равен 1 м, высота цилиндра равна длине окружности основания. Найдите площадь боковой поверхности цилиндра.
538. Площадь боковой поверхности цилиндра равна 5. Найдите площадь осевого сечения цилиндра.
539. Сколько понадобится краски, чтобы покрасить бак цилиндрической формы с диаметром основания 1,5 м и высотой 3 м, если на один квадратный метр расходуется 200 г краски?
540. Высота цилиндра на 12 см больше его радиуса, а площадь полной поверхности равна 288π см2. Найдите радиус основания и высоту цилиндра.
541. Сколько квадратных метров листовой жести пойдет на изготовление трубы длиной 4 м и диаметром 20 см, если на швы необходимо добавить 2,5% площади ее боковой поверхности?
542. Угол между образующей цилиндра и диагональю осевого сечения равен φ, площадь основания цилиндра равна S. Найдите площадь боковой поверхности цилиндра.
543. Угол между диагоналями развертки боковой поверхности цилиндра равен φ, диагональ равна d. Найдите площади боковой и полной поверхностей цилиндра.
544. Из квадрата, диагональ которого равна d, свернута боковая поверхность цилиндра. Найдите площадь основания цилиндра.
545. Цилиндр получен вращением квадрата со стороной а вокруг одной из его сторон. Найдите площадь: а) осевого сечения цилиндра; б) боковой поверхности цилиндра; в) полной поверхности цилиндра.
546. Один цилиндр получен вращением в пространстве прямоугольника ABCD вокруг прямой АВ, а другой цилиндр — вращением того же прямоугольника вокруг прямой ВС. а) Докажите, что площади боковых поверхностей этих цилиндров равны, б) Найдите отношение площаде
Глава VI. Цилиндр, конус и шар § 2. Конус

547. Высота конуса равна 15 см, а радиус основания равен 8 см. Найдите образующую конуса.
548. Образующая конуса, равная 12 см, наклонена к плоскости основания под углом α. Найдите площадь основания конуса, если: а) α = 30°; б) α = 45°; в) α = 60°.
549. Высота конуса равна 8 дм. На каком расстоянии от вершины конуса надо провести плоскость, параллельную основанию, чтобы площадь сечения была равна: а) половине площади основания; б) четверти площади основания?
550. Осевое сечение конуса — прямоугольный треугольник. Найдите площадь этого сечения, если радиус основания конуса равен 5 см.
551. Осевое сечение конуса — правильный треугольник со стороной 2г. Найдите площадь сечения, проведенного через две образующие конуса, угол между которыми равен: а) 30°; б) 45°; в) 60°.
552. Высота конуса равна h, а угол между высотой и образующей конуса равен 60°. Найдите площадь сечения конуса плоскостью, проходящей через две взаимно перпендикулярные образующие.
553. Найдите высоту конуса, если площадь его осевого сечения равна 6 дм2, а площадь основания равна 8 дм2.
554. Образующая конуса равна l, а радиус основания равен r. Найдите площадь сечения, проходящего через вершину конуса и хорду основания, стягивающую дугу: а) в 60°; б) в 90°.
555. Высота конуса равна 10 см. Найдите площадь сечения, проходящего через вершину конуса и хорду основания, стягивающую дугу в 60°, если плоскость сечения образует с плоскостью основания конуса угол: а) 30°; б) 45°; в) 60°.
556. Основанием конуса с вершиной Р является круг радиуса r с центром О. Докажите, что если секущая плоскость α перпендикулярна к оси конуса, то сечение конуса представляет собой круг с центром O1 радиуса r1, где О1 — точка пересечения плоскости &al
557. Две секущие плоскости перпендикулярны к оси конуса. Докажите, что площади сечений конуса этими плоскостями относятся как квадраты расстояний от вершины конуса до этих плоскостей.
558. Разверткой боковой поверхности конуса является сектор с дугой α. Найдите α, если высота конуса равна 4 см, а радиус основания равен 3 см.
559. Найдите дугу сектора, представляющего собой развертку боковой поверхности конуса, если образующая конуса составляет с плоскостью основания угол в 60°.
560. Найдите угол при вершине осевого сечения конуса, если разверткой его боковой поверхности является сектор с дугой, равной: а) 180°; б) 90°; в) 60°.
561. Вычислите площадь основания и высоту конуса, если разверткой его боковой поверхности является сектор, радиус которого равен 9 см, а дуга равна 120°.
562. Угол между образующей и осью конуса равен 45°, образующая равна 6,5 см. Найдите площадь боковой поверхности конуса.
563. Площадь осевого сечения конуса равна 0,6 см2. Высота конуса равна 1,2 см. Вычислите площадь полной поверхности конуса.
564. Образующая конуса наклонена к плоскости основания под углом φ. В основание конуса вписан треугольник, у которого одна сторона равна a, а противолежащий угол равен α. Найдите площадь полной поверхности конуса.
565. Прямоугольный треугольник с катетами 6 см и 8 см вращается вокруг меньшего катета. Вычислите площади боковой и полной поверхностей образованного при этом вращении конуса.
566. Равнобедренный треугольник, боковая сторона которого равна m, а угол при основании равен φ, вращается вокруг основания. Найдите площадь поверхности тела, получаемого при вращении треугольника.
567. Найдите образующую усеченного конуса, если радиусы оснований равны 3 см и 6 см, а высота равна 4 см.
568. Радиусы оснований усеченного конуса равны 5 см и 11 см, а образующая равна 10 см. Найдите: а) высоту усеченного конуса; б) площадь осевого сечения.
569. Радиусы оснований усеченного конуса равны R и r, где а образующая составляет с плоскостью основания угол в 45°. Найдите площадь осевого сечения.
570. Площадь боковой поверхности конуса равна 80 см2. Через середину высоты конуса проведена плоскость, перпендикулярная к высоте. Найдите площадь боковой поверхности образовавшегося при этом усеченного конуса.
571. Дана трапеция ABCD, в которой ∠A=90°, ∠D = 45°, ВС = 4 см, CD = 3√2 см. Вычислите площади боковой и полной поверхностей усеченного конуса, образованного вращением данной трапеции вокруг стороны АВ.
572. Ведро имеет форму усеченного конуса, радиусы оснований которого равны 15 см и 10 см, а образующая равна 30 см. Сколько килограммов краски нужно взять для того, чтобы покрасить с обеих сторон 100 таких ведер, если на 1 м2 требуется 150 г краски? (Толщ
Глава VI. Цилиндр, конус и шар. Дополнительные задачи

601. Площадь осевого сечения цилиндра равна S. Найдите площадь сечения цилиндра плоскостью, проходящей через середину радиуса основания перпендикулярно к этому радиусу.
602. Вершины А и В прямоугольника ABCD лежат на окружности одного из оснований цилиндра, а вершины С и D — на окружности другого основания. Вычислите радиус цилиндра, если его образующая равна а, АВ=а, а угол между прямой ВС и плоскостью основания равен 6
603. Докажите, что если плоскость параллельна оси цилиндра и расстояние между этой плоскостью и осью равно радиусу цилиндра, то плоскость содержит образующую цилиндра, и притом только одну. (В этом случае плоскость называется касательной плоскостью к цили
604. При вращении прямоугольника вокруг неравных сторон получаются цилиндры, площади полных поверхностей которых равны S1 и S2. Найдите диагональ прямоугольника.
605. Найдите отношение площади полной поверхности цилиндра к площади боковой поверхности, если осевое сечение цилиндра представляет собой: а) квадрат; б) прямоугольник ABCD, в котором AB:AD = 1:2.
606. Площадь боковой поверхности цилиндра равна площади круга, описанного около его осевого сечения. Найдите отношение радиуса цилиндра к его высоте.
607. Найдите высоту и радиус цилиндра, имеющего наибольшую площадь боковой поверхности, если периметр осевого сечения цилиндра равен 2р.
608. Толщина боковой стенки и дна стакана цилиндрической формы равна 1 см, высота стакана равна 16 см, а внутренний радиус равен 5 см. Вычислите площадь полной поверхности стакана.
609. Четверть круга свернута в коническую поверхность. Докажите, что образующая конуса в четыре раза больше радиуса основания.
610. Найдите косинус угла при вершине осевого сечения конуса, имеющего три попарно перпендикулярные образующие.
611. Площадь основания конуса равна S1, а площадь боковой поверхности равна S0. Найдите площадь осевого сечения конуса.
612. Отношение площадей боковой и полной поверхностей конуса равно 7/8. Найдите угол между образующей и плоскостью основания конуса.
613. Через вершину конуса и хорду основания, стягивающую дугу в 120°, проведено сечение, составляющее с плоскостью основания угол в 45°. Найдите площадь сечения, если радиус основания равен 4 см.
614. Найдите угол между образующей и высотой конуса, если разверткой его боковой поверхности является сектор с дугой 270°.
615. Прямоугольный треугольник с катетами а и b вращается вокруг гипотенузы. Найдите площадь поверхности полученного тела.
616. Равнобедренная трапеция, основания которой равны 6 см и 10 см, а острый угол 60°, вращается вокруг большего основания. Вычислите площадь поверхности полученного тела.
617. Высота конуса равна 4 см, а радиус основания равен 3 см. Вычислите площадь полной поверхности правильной n-угольной пирамиды, вписанной в конус*, если: а) n = 3; б) n= 4; в) n = 6.
618. Диагонали осевого сечения усеченного конуса перпендикулярны. Одно из оснований осевого сечения равно 40 см, а его площадь равна 36 дм2. Вычислите площади боковой и полной поверхностей усеченного конуса.
619. Докажите, что: а) центр сферы является центром симметрии сферы; б) любая прямая, проходящая через центр сферы, является осью симметрии сферы; в) любая плоскость, проходящая через центр сферы, является плоскостью симметрии сферы.
620. Вершины прямоугольного треугольника с катетами 1,8 см и 2,4 см лежат на сфере, а) Докажите, что если радиус сферы равен 1,5 см, то центр сферы лежит в плоскости треугольника. б) Найдите расстояние от центра сферы до плоскости треугольника, если радиу
621. Расстояние от центра сферы радиуса R до данной прямой равно d. Докажите, что: а) если d<R, то прямая пересекает сферу в двух точках; б) если d = R, то прямая имеет только одну общую точку со сферой; в) если d>R, то прямая не имеет со сферой ни
622. Найдите координаты точек пересечения сферы, заданной уравнением (х — З)2 +у2 +(z+5)2 = 25, с осями координат.
623. Найдите радиус сечения сферы х2 +у2 + z2 = 36 плоскостью, проходящей через точку М (2; 4; 5) и перпендикулярной к оси абсцисс.
624. Два прямоугольника лежат в различных плоскостях и имеют общую сторону. Докажите, что все вершины данных прямоугольников лежат на одной сфере.
625. Расстояние между центрами двух равных сфер меньше их диаметра. а) Докажите, что пересечением этих сфер является окружность. б) Найдите радиус этой окружности, если радиусы сфер равны R, а расстояние между их центрами равно 1,6 R.
626. Точки А, В, С и D лежат на сфере радиуса R, причем ∠ADB= ∠BDC=∠CDA = 2φ, AD = BD = CD. Найдите: а) АВ и AD; б) площадь сечения сферы плоскостью ABC.
627. Радиус сферы равен 10 см. Вне сферы дана точка М на расстоянии 16 см от ближайшей точки сферы. Найдите длину такой окружности на сфере, все точки которой удалены от точки М на расстояние 24 см.
628. Тело ограничено двумя сферами с общим центром. Докажите, что площадь его сечения плоскостью, проходящей через центры сфер, равна площади сечения плоскостью, касательной к внутренней сфере.


Категория: Геометрия | Добавил: Админ | Теги: Атанасян
Просмотров: | Загрузок: 0 | Рейтинг: 0.0/0
Смотрите также:

по геометрии 11 класс Атанасян, Бутузов, Кадомцев 2009 скачать бесплатно

Всего комментариев: 0
avatar