Главная » Файлы » Вуз » Дискретная математика

Дискретная математика Редькин Н.П.

На данной странице вы можете бесплатно посмотреть Дискретная математика Редькин Н.П. с ответами. Надеемся что Дискретная математика Редькин Н.П. поможет вам решить все ваши проблемы. Настоятельно рекомендуем пользоваться Дискретная математика Редькин Н.П. только в целях проверки знаний. Главное – не оценка, главное – знание.

Уважаемые посетители сайта, если вы не согласны с той информацией которая представлена на данной странице или считаете ее не правильной, не стоит попросту тратить свое время на написание негативных высказываний, вы можете помочь друг другу, для этого присылайте в комментарии свое "правильное" решение и мы его скорее всего опубликуем.

13.11.2015, 13:15

ОГЛАВЛЕНИЕ
Глава I. Элементы комбинаторики………………………5
§ 1. Комбинаторные объекты и комбинаторные числа………..5
§ 2. Формула включения-исключения.
Производящие функции и возвратные последовательности… 7
Глава II. Графы и сети……………………………… 13
§ 1. Элементы графа. Подграфы. Способы задания графов…… 13
§ 2. Геометрическая реализация графов. Верхняя оценка числа
неизоморфных графов с n рёбрами…………………. 16
§ 3. Деревья. Характеристические свойства деревьев………. 17
§ 4. Верхняя оценка числа неизоморфных
корневых деревьев с n рёбрами……………………. 19
§ 5. Теорема Кэли о числе деревьев
с занумерованными вершинами…………………….20
§ 6. Двудольные графы. Паросочетания и трансверсали.
Критерий существования трансверсали (теорема Холла)……….22
§ 7. Сети. Потоки в сетях. Теорема Форда и Флакерсона о
максимальной величине потока в сети……………….24
Глава III. Булевы функции и формулы…………………..30
§ 1. Булевы функции. Табличное задание булевых функций. Существенные и фиктивные переменные булевых функций.
Элементарные булевы функции…………………….30
§ 2. Формулы и функции, реализуемые формулами.
Простейшие эквивалентности……………………..32
§ 3. Размножение булевых функций по переменным.
Дизъюнктивные нормальные формы…………………34
§ 4. Полнота систем булевых функций. Примеры полных систем.
Представление булевых функций полиномами Жегалкина…….. 36
§ 5. Функции k-значной логики………………………..37
Глава IV. Схемы из функциональных элементов.
Синтез и оценки сложности схем……………………
§ 1. Схемы n функциональных элементов в базисе {&, V, -}……39
§ 2. Синтез схем с использованнем д.н.ф…………………41
§ 3. Метод Шеннона………………………………..43
§ 4. Асимптотически оптимальный метод синтеза схем
(метод Лупанова)……………………………….45
§ 5. Мощностный метод получения нижней оценки
для сложности схем……………………………..47
Глава V. Ограниченно-детерминированные функции
и реализация их автоматами……………………….50
§ 1. Детерминированные и ограниченно-детерминированные
функции……………………………………… 50
§ 2. Способы задания о.-д. функций…………………….54
§ 3. Схемы автоматов из функциональных элементов
и элементов задержки……………………………56
Глава VI. Кодирование ………………………………57
§ 1. Алфавитное кодирование…………………………57
§ 2. Неравенство Крафта-Макмиллана…………………..60
§ 3. Коды с минимальной избыточностью. Оптимальное
кодирование Хаффмена…………………………..62
§ 4. Самокорректирующиеся коды. Коды Хэмминга…………67
§ 5. Геометрические свойства кодов Хэмминга. Оценки числа
кодовых слов в коде, исправляющем р ошибок…………69
Глава VIL Дискретные экстремальные задачи…………….72
§ 1. Задача на покрытие. Точное решение задачи на покрытие … 72
§ 2. Градиентный алгоритм поиска приближённого решения задачи на покрытие. Оценка сложности градиентного покрытия. Отклонение градиентного покрытия от
минимального………………………………….73
§ 3. Задача о минимальном остовном дереве………………77
§ 4. Поиск кратчайшего и надёжного путей в графе…………78
Задачи…………………………………………..82
Список литературы………………………………..96



Категория: Дискретная математика | Добавил: Админ | Теги: Редькин
Просмотров: | Загрузок: 0 | Рейтинг: 0.0/0
Смотрите также:

Дискретная математика Редькин Н.П. скачать бесплатно

Всего комментариев: 0
avatar