Тема №6852 КОМПЬЮТЕРНЫЕ ТЕЛЕКОММУНИКАЦИОННЫЕ СИСТЕМЫ. КАНАЛЫ СВЯЗИ
Поиск задачи:

Рассмотрим тему КОМПЬЮТЕРНЫЕ ТЕЛЕКОММУНИКАЦИОННЫЕ СИСТЕМЫ. КАНАЛЫ СВЯЗИ из предмета Информатика и все вопросы которые связанны с ней. Из представленного текста вы познакомитесь с КОМПЬЮТЕРНЫЕ ТЕЛЕКОММУНИКАЦИОННЫЕ СИСТЕМЫ. КАНАЛЫ СВЯЗИ, узнаете ключевые особенности и основные понятия.

Уважаемые посетители сайта, если вы не согласны с той информацией которая представлена на данной странице или считаете ее не правильной, не стоит попросту тратить свое время на написание негативных высказываний, вы можете помочь друг другу, для этого присылайте в комментарии свое "правильное" решение и мы его скорее всего опубликуем.

КОМПЬЮТЕРНЫЕ ТЕЛЕКОММУНИКАЦИОННЫЕ СИСТЕМЫ

КАНАЛЫ СВЯЗИ

Компьютерными телекоммуникационными системами называют обмен информацией на расстоянии между несколькими компьютерами.

Компьютерные каналы связи можно классифицировать по следующим признакам:

-    по способу кодирования информации можно разделить на цифровые и аналоговые;

-    по способу коммуникации можно разделить на выделенные и коммутируемые;

-    по способу передачи информации разделяют на проводные и беспроводные, оптические.

Аналоговые — по аналоговым каналам информация, которая передается, представляется в непрерывной форме, то есть в виде непрерывного ряда значений какой-либо физической величины;

Цифровые — это каналы, по которым пересылаемая информация передается в виде цифровых (дискретных, импульсных) сигналов той или иной физической природы.

Коммутируемые — это каналы, созданные из отдельных участков только на время передачи по ним информации, после окончания сеанса связи такой канал разрывается.

Выделенные каналы — это каналы, которые организуются на длительное время и имеют постоянные характеристики по длине и пропускной способности.

К основным характеристикам каналов связи относят скорость передачи информации, надежность, стоимость, резервы развития.

Скорость передачи информации измеряется в бит/с и в бодах. Количество изменений информационного параметра сигнала в секунду измеряется в бодах.

Бод — это такая скорость, когда передается один сигнал (например, импульс) в секунду независимо от величины его изменения. Единица измерения бит/с соответствует единичному изменению сигнала в канале связи и при простых методах кодирования сигнала; когда любое изменение бывает только единичным, можно принять, что: 1 бод = 1 бит/с; 1 Кбод = 103 бит/с; 1 Мбод = 106 бит/с и т. д.

В случае если элемент данных может быть представлен не двумя, а большим количеством значений какого-либо параметра сигнала, значение 1 бод будет больше 1 бит в секунду.

Надежность — передача информации без ее потерь и изменений. Передатчик и приемник — это аппаратура передачи данных, связывают источник и приемник информации с каналом связи. Примерами аппаратуры передачи данных могут служить модемы, терминальные адаптеры, сетевые карты и т. д.

Для улучшения качества сигнала, передаваемого на большие расстояния, используется дополнительная аппаратура: повторители, коммутаторы, концентраторы, маршрутизаторы, мультиплексоры.

На этих принципах основана классификация, учитывающая пропускную способность канала связи:

-    низкоскоростные каналы связи, скорость передачи информации в них составляет от 50 до 200 бит/с;

-    среднескоростные каналы связи, скорость передачи в них от 300 до 9600 бит/с, а в новых стандартах до 56 000 бит/с;

-    высокоскоростные (широкополосные) каналы связи, обеспечивающие скорость передачи информации выше 56 000 бит/с. Скоростные характеристики канала во многом зависят от используемых кабелей.

Витая пара — это изолированные медные провода, обычный диаметр которых составляет 1 мм, попарно свитые один вокруг другого в виде спирали. Это позволяет уменьшить электромагнитное взаимодействие нескольких расположенных рядом витых пар. Самым распространенным применением витой пары является телефонная линия. Витые пары, тянущиеся на большие расстояния, объединяются в кабель, на который надевается защитное покрытие. Если бы пары проводов, находящиеся внутри таких кабелей, не были свиты, то сигналы, проходящие по ним, накладывались бы друг на друга. Телефонные кабели диаметром несколько сантиметров можно видеть протянутыми на столбах.

Витые пары используются для передачи аналоговых и цифровых сигналов. Полоса пропускания зависит от диаметра и длины провода, но на больших расстояниях может достигнуть несколько мегабит в секунду.

Существуют два вида витой пары.

Неэкранированные витые пары имеют довольно высокую пропускную способность, удобны в работе, не нуждаются в заземлении и благодаря невысокой цене широко распространены.

Неэкранированная витая пара не применяется в локальной сети, в которой обрабатывается информация с ограниченным доступом, потому что она может усилить напряженность поля.

Экранированные витые пары обладают хорошими техническими характеристиками, но имеют высокую стоимость, жестки и неудобны в работе и требуют заземления. Данный вид кабеля применяется в основном в сетях с ограниченным доступом к информации.

Коаксиальный кабель — средство передачи данных. Он лучше экранирован, чем витая пара, поэтому может обеспечить передачу данных на более дальние расстояния с более высокими скоростями. Широко применяются два типа кабелей. Один используется для передачи только цифрового сигнала, а другой тип кабеля — аналогового сигнала.

Коаксиальный кабель состоит из покрытого изоляцией твердого медного провода, расположенного в центре кабеля. Поверх изоляции натянут цилиндрический проводник, обычно выполненный в виде мелкой медной сетки. Он покрыт наружным защитным слоем изоляции (пластиковой оболочкой). Конструкция и специальный тип экранирования коаксиального кабеля обеспечивают высокую пропускную способность и отличную помехозащищенность.

Коаксиальные кабели для телекоммуникаций делятся на две группы:

-    «толстые» коаксиалы;

-    «тонкие» коаксиалы.

Толстый коаксиальный кабель имеет наружный диаметр 12,5 мм и достаточно толстый проводник (2,17 мм), обеспечивающий хорошие электрические и механические характеристики. Скорость передачи данных по толстому коаксиальному кабелю до 50 Мбит/с, но, учитывая определенное неудобство работы с ним

и его значительную стоимость, использовать его в сетях передачи данных можно не всегда.

Тонкий коаксиальный кабель имеет наружный диаметр 5—6 мм, он дешевле и удобнее в работе, но тонкий проводник в нем (0,9 мм) обусловливает худшие электрические и механические характеристики. Скорость передачи данных по «тонкому» коаксиалу не превышает 10 Мбит/с.

Коаксиальные кабели широко применялись в телефонных системах, но на линиях большой протяженности их заменяют оптоволоконными кабелями. Однако коаксиальные кабели широко используются для кабельного телевидения.

Оптоволоконные кабели по своей структуре напоминает витую пару. Основу волоконно-оптического кабеля составляет стеклянная сердцевина, по которой распространяется свет, окруженная твердым заполнителем и помещенная в защитную оболочку диаметром 125 мкм.

В одном кабеле может содержаться от одного до нескольких сотен таких сердечников. Сердечник покрыт слоем стекла с более низким, чем у сердечника, коэффициентом преломления. Он предназначен для более надежного предотвращения выхода света за пределы сердечника.

Внешним слоем служит пластиковая оболочка, защищающая остекление. Источником распространяемого по оптоволоконному кабелю светового луча является преобразователь электрических сигналов в оптические, например светодиод или полупроводниковый лазер.

Кодирование информации осуществляется изменением интенсивности светового луча. Физической основой передачи светового луча по волокну является принцип полного внутреннего отражения луча от стенок волокна, обеспечивающий минимальное затухание сигнала, наивысшую защиту от внешних электромагнитных полей и высокую скорость передачи. По оптоволоконному кабелю, имеющему большое число волокон, можно передавать огромное количество сообщений. На другом конце кабеля принимающий прибор преобразует световые сигналы в электрические.

Скорость передачи данных по оптоволоконному кабелю достигает 1000 Мбит/с, но он очень дорог и используется лишь для прокладки ответственных магистральных каналов связи. Такой кабель связывает столицы и крупные города большинства стран мира, а также материки.

В вычислительных сетях и в сети Интернет оптоволоконный кабель используется на наиболее ответственных их участках. Возможности оптоволоконных каналов поистине безграничны: по одному толстому магистральному оптоволоконному кабелю можно одновременно организовать несколько сот тысяч телефонных каналов, несколько тысяч видеотелефонных каналов и около тысячи телевизионных каналов.

В настоящее время широкое распространение получают беспроводные виды связи: радиоканалы, инфракрасные и миллиметровые излучения.

Радиоканал — это беспроводный канал связи, прокладываемый через эфир. Система передачи данных по радиоканалу включает в себя радиопередатчик и радиоприемник, настроенные на один и тот же радиоволновой диапазон, который определяется частотной полосой электромагнитного спектра, используемой для передачи данных.

Такую систему передачи данных называют просто радиоканалом. Скорости передачи данных по радиоканалу практически не ограничены (они ограничиваются полосой пропускания приемопередающей аппаратуры). Высокоскоростной радиодоступ предоставляет пользователям каналы со скоростью передачи 2 Мбит/с и выше. В ближайшем будущем ожидаются радиоканалы со скоростями 20—50 Мбит/с.

Инфракрасное и миллиметровое излучение без использования кабеля широко применяется для связи на небольших расстояниях. Дистанционные пульты управления для телевизоров и видеомагнитофонов используют инфракрасное излучение. Они относительно направленные, дешевые и легко устанавливаемые, но имеют один важный недостаток: инфракрасное излучение не проходит сквозь твердые объекты. С другой стороны, тот факт, что инфракрасные волны не проходят сквозь стены, является также и положительным. Ведь это повышает защищенность инфракрасной системы от прослушивания по сравнению с радиосистемой.

По этой причине для использования инфракрасной системы связи не требуется государственная лицензия в отличие от радиосвязи (кроме диапазонов ISM). Связь в инфракрасном диапазоне применяется в настольных вычислительных системах (например, для связи ноутбуков с принтерами), но все же не играет значимой роли в телекоммуникации.

Беспроводные каналы связи обладают плохой помехозащищенностью, но обеспечивают пользователю максимальную мобильность и оперативность связи. В вычислительных сетях бес про -водные каналы связи для передачи данных используются чаще всего там, где применение традиционных кабельных технологий затруднено или просто невозможно.

Но в ближайшем будущем ситуация может измениться — активно ведется разработка новой технологии беспроводной связи Bluetooth. Bluetooth — это технология передачи данных по радиоканалам на короткие расстояния, позволяющая осуществлять связь беспроводных телефонов, компьютеров и различной периферии даже в тех случаях, когда нарушается требование прямой видимости.

Первоначально Bluetooth рассматривалась исключительно как альтернатива инфракрасным соединениям между различными портативными устройствами. Но сейчас специалисты предсказывают уже два направления широкого использования Bluetooth.

Первое — это домашние сети, включающие в себя различную электронную технику, в частности компьютеры, телевизоры и т. п. Второе, гораздо более важное, направление — локальные сети офисов небольших фирм, где стандарт Bluetooth позиционируется как замена традиционных проводных технологий. Недостатком Bluetooth является сравнительно низкая скорость передачи данных — она не превышает 720 Кбит/с, поэтому эта технология не способна обеспечить передачу видеосигнала.

 


Категория: Информатика | Добавил: Админ (26.07.2016)
Просмотров: | Рейтинг: 0.0/0


Другие задачи:
Всего комментариев: 0
avatar