Тема №8135 Решение задач по химии смеси
Поиск задачи:

Рассмотрим тему Решение задач по химии смеси из предмета Химия и все вопросы которые связанны с ней. Из представленного текста вы познакомитесь с Решение задач по химии смеси, узнаете ключевые особенности и основные понятия.

Уважаемые посетители сайта, если вы не согласны с той информацией которая представлена на данной странице или считаете ее не правильной, не стоит попросту тратить свое время на написание негативных высказываний, вы можете помочь друг другу, для этого присылайте в комментарии свое "правильное" решение и мы его скорее всего опубликуем.

Различные способы решения задач на смеси.

 

Задача. (на смешивание растворов)

Один раствор содержит 20% соли, а второй 70%. Сколько граммов первого и второго растворов нужно взять, чтобы получить 100 г 50%-го солевого раствора?

 

Способ 1.

1. Составим таблицу:

 

α

М (г)

m (г)

1-й раствор

20% или 0,2

x

0,2 x

2-й раствор

70% или 0,7

100 - x

0,7 (100 - x)

смесь

50 % или 0,5

100

50

2. Составим и решим уравнение:

0,2 х + 0,7 (100 - x) = 50

х = 40

Ответ: 60 г - 70% раствора и 40 г -20% раствора.

 

Способ 2.

1. Составим таблицу:

 

α

М (г)

m (г)

1-й раствор

20% или 0,2

x

0,2 x

2-й раствор

70% или 0,7

y

0,7 y

смесь

50 % или 0,5

100

50

(α – доля основного вещества в смеси, М – общая масса смеси, m – масса основного вещества в смеси).

2. Составим и решим систему уравнений:

х + у = 100 х = 40

0,2 х + 0,7 у = 50 у = 60

Ответ: 60 г - 70% раствора и 40 г -20% раствора.

 

Способ 3.

Решим эту задачу старинным способом по правилу «креста». Составим схему:

 

20 20

50

70​ 30

 

Значит , 100 г смеси составляют 50 частей .

100 : (30+20)= 2 г.(одна часть)

2*30=60 г. (70% р-р)

2*20=40 г. (20% р-р)

Ответ: 60 г - 70% раствора и 40 г -20% раствора.

Правило «креста»:

 

В левой колонке схемы записаны процентные содержания соли в имеющихся растворах. Посередине – процентное содержание соли в полученной смеси. В правой – разности процентных содержаний имеющихся растворов и полученной смеси (вычитаем из большего числа меньшее и записываем разность на ту диагональ, где находятся, соответственно, уменьшаемое и вычитаемое).

 

Решите самостоятельно.

 

 

1. Имеется два раствора некоторого вещества. Один 15%-ный, а второй 65%-ный. Сколько нужно взять литров каждого раствора, чтобы получить 200л раствора, содержание вещества в котором равно 30%?

2. Имеется два сплава никеля с другой сталью, в которых содержание никеля составляет 5% и 40%. Сколько тонн каждого сплава нужно сплавить, чтобы получилось 140 тонн новой стали с 30-ным содержанием никеля?

3. Имеется два разных сплава меди, процент содержания которой в первом сплаве на 40% меньше, чем во втором. Когда оба сплава соединили вместе, то новый сплав получился с 36-ным содержанием меди. Известно, что в первом сплаве было 6 кг меди, а во втором в 2 раза больше. Каково процентное содержание меди в обоих сплавах?

4. Смешали 30-ный раствор соляной кислоты с 10-ным. В итоге получилось 600г раствора с 15-ным содержанием соляной кислоты. Найдите, сколько взято было каждого раствора.

5. Бронза – сплав меди и олова. В древности из бронзы отливали колокола, если в ней содержалось 75% меди. К куску бронзы 500кг и содержащему 72% добавили некоторое количество бронзы, содержащей 80% меди, и получили бронзу, необходимую для изготовления колокола. Определите, сколько добавили 80% бронзы.

 

6. Имеется 600г сплава золота и серебра содержащего золото и серебро в отношении 1:5 соответственно. Сколько грамм золота необходимо добавить к этому сплаву чтобы получить новый сплав, содержащий 50% серебра.

7. Имеется стальной лом двух сортов с содержанием никеля 5% и 40%. Сколько нужно взять металла каждого из этих сортов, чтобы получить 140 т стали с содержанием 30% никеля?

8. 40% раствор серной кислоты разбавили 60% раствором, после чего добавили 5кг воды и получили раствор 20% концентрации. Если бы вместо 5кг воды добавили 5 кг 80% раствора серной кислоты, то получился бы 70% раствор. Сколько было 40% и 60% раствора серной кислоты?

9. Смешали 30%-й раствор соляной кислоты с ее 10%-м раствором и получили 600 г 15%-го раствора. Сколько граммов 30 % -го раствора было взято?

 

Задачи на добавление (удаление) одного вещества.

 

Задача 1.

Сироп содержит 18% сахара. Сколько килограммов воды нужно добавить к 40 г сиропа, чтобы содержание сахара составило 15%?

Решение.

Пусть надо добавить кг воды. Составим таблицу:

 

α

М (г)

m (г)

Было

18% или 0,18

40

0,18 · 40

Стало

15% или 0,18

40 + х

0,15 (40 + х)

Так как масса сахара не изменилась, то составим и решим уравнение:

0,15 (40 + х) = 0,18 · 40, х = 8.

Ответ: 8 кг.

 

Задача 2.

Сколько граммов 35%-го раствора марганцовки надо добавить к 325 г воды, чтобы концентрация марганцовки в растворе составила 10%?

Решение.

Решим задачу по правилу «креста»:

 

35 10

10

0 25

 

Значит, 325 г воды составляют 25 частей, а 35%-й раствор – 10 частей, или 325 : 25 · 10 = 130 г.

Ответ: 130 г.

 

 

Решите самостоятельно.

 

1. В 5 кг сплава олова и цинка содержится 80% цинка. Сколько килограммов олова надо добавить к этому сплаву, чтобы процентное содержание цинка стало 40%?

2. Имеется 4 литра 20%-го раствора спирта. Сколько воды него нужно, чтобы получился 10%-й раствор спирта?

3. К 40%-му раствору соляной кислоты добавили 50 г чистой соляной кислоты, в силу чего концентрация такого раствора стала равной 60%. Найти первоначальный вес раствора.

4. К раствору, содержащему 30 г соли, добавили 400 г воды, после чего концентрация соли уменьшилась на 10%/. Найти начальную концентрацию соли.

5. К 5 килограмм сплава олова и цинка добавили 4 кг олова. Найдите первоначальное процентное содержание цинка в первоначальном сплаве, если в новом сплаве цинка стало в 2 раза меньше олова.

6. При выплавке стали из чугуна, выжигается углерод. Содержание углерода в чугуне 4%. Сколько тонн углерода нужно выжечь из 245т чугуна, чтобы получилась сталь с содержанием углерода 2%?

 

7. Слиток сплава меди и цинка массой 36 кг содержит 45% меди. Какую массу меди надо добавить к этому куску, чтобы полученный сплав содержал 60% меди?

 

8. Сколько чистого спирта нужно добавить к 735 г 16%-ного раствора йода и спирта, чтобы получить 10%-ный раствор?

 


Категория: Химия | Добавил: Админ (05.09.2016) Просмотров: | Рейтинг: 0.0/0

Другие задачи:
Всего комментариев: 0
avatar